Section 8.3 Ellipses Parabola Hyperbola Circle Ellipse.

Slides:



Advertisements
Similar presentations
10.1 Parabolas.
Advertisements

11.2 The Ellipse.
Section 11.6 – Conic Sections
Conic Sections Parabola Ellipse Hyperbola
9.1.1 – Conic Sections; The Ellipse
10.3 Hyperbolas. Circle Ellipse Parabola Hyperbola Conic Sections See video!
C.P. Algebra II The Conic Sections Index The Conics The Conics Translations Completing the Square Completing the Square Classifying Conics Classifying.
Rev.S08 MAC 1140 Module 11 Conic Sections. 2 Rev.S08 Learning Objectives Upon completing this module, you should be able to find equations of parabolas.
Advanced Geometry Conic Sections Lesson 4
Unit #4 Conics. An ellipse is the set of all points in a plane whose distances from two fixed points in the plane, the foci, is constant. Major Axis Minor.
What is the standard form of a parabola who has a focus of ( 1,5) and a directrix of y=11.
9.5 Hyperbolas PART 1 Hyperbola/Parabola Quiz: Friday Conics Test: March 26.
Conics A conic section is a graph that results from the intersection of a plane and a double cone.
50 Miscellaneous Parabolas Hyperbolas Ellipses Circles
& & & Formulas.
Translating Conic Sections
Conics can be formed by the intersection
Section 7.3 – The Ellipse Ellipse – a set of points in a plane whose distances from two fixed points is a constant.
10.6 – Translating Conic Sections. Translating Conics means that we move them from the initial position with an origin at (0, 0) (the parent graph) to.
Sullivan Algebra and Trigonometry: Section 10.3 The Ellipse Objectives of this Section Find the Equation of an Ellipse Graph Ellipses Discuss the Equation.
Ellipses Part 1 Circle/Ellipse Quiz: March 9 Midterm: March 11.
EXAMPLE 3 Write an equation of a translated parabola Write an equation of the parabola whose vertex is at (–2, 3) and whose focus is at (–4, 3). SOLUTION.
Conic Sections Curves with second degree Equations.
Barnett/Ziegler/Byleen College Algebra, 6th Edition
Circle Ellipse HyperbolaParabola Conic Sections. Circles x 2 + y 2 = 16 center: (0,0) radius: Ex. 1 Standard form: (x – h) 2 + (y – k) 2 = r 2.
EXAMPLE 3 Write an equation of a translated parabola
W RITING AND G RAPHING E QUATIONS OF C ONICS GRAPHS OF RATIONAL FUNCTIONS STANDARD FORM OF EQUATIONS OF TRANSLATED CONICS In the following equations the.
Conic Sections.
W RITING AND G RAPHING E QUATIONS OF C ONICS GRAPHS OF RATIONAL FUNCTIONS STANDARD FORM OF EQUATIONS OF TRANSLATED CONICS In the following equations the.
What am I?. x 2 + y 2 – 6x + 4y + 9 = 0 Circle.
Conic Sections The Parabola. Introduction Consider a ___________ being intersected with a __________.
The Ellipse.
Ellipse Notes. What is an ellipse? The set of all points, P, in a plane such that the sum of the distances between P and the foci is constant.
MTH253 Calculus III Chapter 10, Part I (sections 10.1 – 10.3) Conic Sections.
Conic Sections There are 4 types of Conics which we will investigate: 1.Circles 2.Parabolas 3.Ellipses 4.Hyperbolas.
Definition: An ellipse is the set of all points in a plane such that the sum of the distances from P to two fixed points (F1 and F2) called foci is constant.
Ellipses Objectives: Write the standard equation for an ellipse given sufficient information Given an equation of an ellipse, graph it and label the center,
Hyperbolas Objective: graph hyperbolas from standard form.
INTRO TO CONIC SECTIONS. IT ALL DEPENDS ON HOW YOU SLICE IT! Start with a cone:
Conics Name the vertex and the distance from the vertex to the focus of the equation (y+4) 2 = -16(x-1) Question:
Short Subject: Conics - circles, ellipses, parabolas, and hyperbolas
Conics A conic section is a graph that results from the intersection of a plane and a double cone.
Conics A conic section is a graph that results from the intersection of a plane and a double cone.
Warm Up circle hyperbola circle
Get out Ellipse: Notes Worksheet and complete #2 & #3 (Notes Sheet From Yesterday)
Translating Conic Sections
Homework Log Wed 4/27 Lesson Rev Learning Objective:
6.2 Equations of Circles +9+4 Completing the square when a=1
Ellipses Date: ____________.
Vertices {image} , Foci {image} Vertices (0, 0), Foci {image}
Ellipses 5.3 (Chapter 10 – Conics). Ellipses 5.3 (Chapter 10 – Conics)
MATH 1330 Section 8.2b.
Writing Equations of Conics
This presentation was written by Rebecca Hoffman
Review Circles: 1. Find the center and radius of the circle.
distance out from center distance up/down from center
Section 10.3.
Chapter 10 Conic Sections
Ellipses Objectives: Write the standard equation for an ellipse given sufficient information Given an equation of an ellipse, graph it and label the center,
Test Dates Thursday, January 4 Chapter 6 Team Test
Warm-up Write the equation of an ellipse centered at (0,0) with major axis length of 10 and minor axis length Write equation of a hyperbola centered.
distance out from center distance up/down from center
4 minutes Warm-Up Write the standard equation of the circle with the given radius and center. 1) 9; (0,0) 2) 1; (0,5) 3) 4; (-8,-1) 4) 5; (4,2)
Warm-Up Write the standard equation for an ellipse with foci at (-5,0) and (5,0) and with a major axis of 18. Sketch the graph.
Chapter 10 Conic Sections.
5.3 Ellipse (part 2) Definition: An ellipse is the set of all points in a plane such that the sum of the distances from P to two fixed points (F1 and.
Chapter 10 Algebra II Review JEOPARDY Jeopardy Review.
Chapter 10 Conic Sections.
10.6 – Translating Conic Sections
Presentation transcript:

Section 8.3 Ellipses Parabola Hyperbola Circle Ellipse

Ellipse:

Besides having the two foci, an ellipse also has a major and minor axis, vertices at the end of the major axis and center point where the two axes cross.

Standard Equations for an Ellipse Major axis Parallel to x - axis x 2 y 2 a 2 b 2 + = 1 Center = (0, 0) Vertices (a, 0), (- a, 0) a (a,0) V (- a, 0) V F (- c, 0) F (c, 0) Foci (c, 0), (- c, 0) c 2 = a 2 - b 2 Major Axis = 2a Minor Axis = 2b (0, 0) Minor Intercepts (0, b), (0, -b) b (0, b) (0, - b) a > b > 0

Standard Equations for an Ellipse Major axis parallel to y - axis x 2 y 2 b 2 a 2 + = 1 Center = (0, 0) Vertices (0, a), (0, - a) Foci (0, c), (0, - c) Major Axis = 2a Minor Axis = 2b Minor Intercepts (b, 0), (- b, 0) a (0,a) V (0,- a,) V b (-b,0) (b,0) (0, 0) (0,c) F F (0,-c) c 2 = a 2 - b 2 a > b > 0

a 2 = 16 a = 4 b 2 = 9 b = 3 c 2 = a 2 - b 2 = = 7 c =  7 Minor intercepts = (0, 3) & (0,- 3) Maj. Axis = 2·a = 2(4) = 8 Min. Axis = 2·b = 2(3) = 6 | | | | | | | || | | || | | | | | | | | | | Ellipse Sketch, Find Foci, Length of Minor and Major Axis For Center at the origin. x 2 y =  7 7 7 Vertices = (4, 0) & (- 4, 0) Foci = (  7, 0) & (-  7, 0)

a 2 = 81 a = 9 b 2 = 16 b = 4 c 2 = a 2 - b 2 = = 65 c =  65 Vertices = (0, 9) & (0, - 9) Minor intercepts = (4,0) & (- 4,0) Maj. Axis = 2·a = 2(9) = 18 Min. Axis = 2·b = 2(4) = 8 | | | | | | | || | | || | | | | | | | | | | Ellipse Sketch, Find Foci, Length of Minor and Major Axis For Center at the origin. x 2 y =  65  65 Foci = (0,  65) & (0, -  65)

Graph the Ellipse Needs to be set equal to 1. Vertices: (0,-4) and (0,4) Minor Intercepts: (-1,0) and (1,0)

Find the equation of the ellipse Foci: (-1,0) and (1,0) Vertices: (-3,0) and (3,0) Therefore a = 3and c = 1

Ellipse Find an equation of an ellipse in the form x 2 y 2 a 2 b 2 + = 1 1. When Major axis is on x-axis Major axis length = 32 Minor axis length = 30 Therefore, a = 32 ÷ 2 = 16 a 2 = 256 b = 30 ÷ 2 = 15 b 2 = 225 x 2 y = 1

2. Major axis on y-axis Major axis length = 16 Distance from Foci to Center = 7 Ellipse Therefore, c = 7 Find an equation of an ellipse in the form x 2 y 2 b 2 a 2 + = 1 a = 16 ÷ 2 = 8 a 2 = 64 c 2 = a 2 – b 2 b 2 = a 2 – c 2 = 64 – 49 = 15 x 2 y = 1

| | | | | | | || | | || | | | | | | | | | | Find the equation of the ellipse in the form below if thee center is the origin. x 2 y 2 a 2 b 2 + = 1 a = 10 b = 6 a 2 = 100 b 2 = 36 x 2 y = 1

Translations Ellipses translate just like circles and parabolas do…by using h and k in the standard equation. This is for a horizontal major axis, switch a and b for a vertical major axis…if your equation isn’t in this form you will need to complete the square to make it so…

Graph the ellipse Center: (-1,3) Major axis parallel to x-axis Place a point 3 units right and left of center Place a point 1 unit above and below the center. Foci are about 2.8 units to the left and right of center.

Graph the ellipse

Major axis is parallel to the y-axis Center is (-4,1) Place 2 points 1.4 unit right and left of center Place 2 points 2.8 units up and down from center

Write the equation of the ellipse Foci: (2,-2) and (4,-2) Vertices: (0,-2) and (6,-2) Center is halfway between the vertices so the point (3,-2) We know a = 3 and c = 1 Plug into standard form:

Write the equation of the ellipse Major axis vertical with length of 6 and minor axis length of 4 centered at (1,-4)