Sept. 2010CRIS, Catania Olaf Scholten KVI, Groningen Physics Radio pulse results plans.

Slides:



Advertisements
Similar presentations
J. Alvarez-Muñiz, ARENA 2005 Simulations of radio emission from EM showers in different dense media E. Marqués R.A. Vázquez E. Zas Jaime Alvarez-Muñiz.
Advertisements

Recent History of Radio Searches for Ultra High Energy Neutrinos David Saltzberg University of California, Los Angeles SalSA meeting February 2, 2005 A.
July 29, 2003; M.Chiba1 Study of salt neutrino detector for GZK neutrinos.
September 16-19, 2008 Hamburg 2008 Olaf Scholten For the NuMoon collaboration KVI, Groningen.
The NuMoon experiment: first results Stijn Buitink for the NuMoon collaboration Radboud University Nijmegen 20 th Rencontres de Blois, 2008 May 19.
LUNASKA LUNASKA: Towards UHE Particle Astronomy with the Moon and Radio Telescopes Clancy W. James, University of Adelaide (Supervisors: R. Protheroe,
The Pierre Auger Observatory Nicolás G. Busca Fermilab-University of Chicago FNAL User’s Meeting, May 2006.
Radio detection of UHE neutrinos E. Zas, USC Leeds July 23 rd 2004.
/AMvdBInt. WS Saltdome Shower Array SLAC 3-4 Feb Neutrino Detection in Salt Domes under LOFAR Ad M. van den Berg Kernfysisch Versneller.
Tuning in to UHE Neutrinos in Antarctica – The ANITA Experiment J. T. Link P. Miočinović Univ. of Hawaii – Manoa Neutrino 2004, Paris, France ANITA-LITE.
Askaryan effect in salt: SLAC T460, June T460 rock-salt target 4lb high-purity synthetic rock-salt bricks (density=2.07) – 6 tons of it. + some.
Heino Falcke Radboud University, Nijmegen ASTRON, Dwingeloo
PERSPECTIVES OF THE RADIO ASTRONOMICAL DETECTION OF EXTREMELY HIGH ENERGY NEUTRINOS BOMBARDING THE MOON R.D. Dagkesamanskii 1), I.M. Zheleznykh 2) and.
The LOFAR Cosmic Ray KSP
E.Plagnol - HENA June The EUSO Project ë An overview of the Physics of EUSO ë Detection of UHECR by fluorescence +Cerenkov ë The EUSO detector.
RADAR Detection of Extensive Air Showers Nils Scharf III. Physikalisches Institut A Bad Honnef Nils Scharf III. Physikalisches Institut A Bad.
8-Jan-2008ASPERA R&D Lisbon AMvdB1 R&D for Radio Detection Ad M. van den Berg R&D and Astroparticle Physics meeting 8 January 2008.
ARIANNA: Searching for Extremely Energetic Neutrinos Lisa Gerhardt Lawrence Berkeley National Laboratory & University of California, Berkeley NSD Monday.
Lunatics - those who search for lunar ticks Developments in Nanosecond Pulse Detection Methods & Technology UHE Neutrino Detection using the Lunar Cherenkov.
Low frequency radio- emission associated with UHE cosmic rays KALYANEE BORUAH Physics Department, Gauhati University.
Low frequency radio- emission from UHE cosmic ray air showers KALYANEE BORUAH Physics Department, Gauhati University.
Spencer Klein, LBNL & UC Berkeley n GZK Neutrinos n Radiodetection The moon as a cosmic target n ANITA – floating over Antarctica n Future experiments.
© 2010 Pearson Education, Inc. Slide Electromagnetic Induction and Electromagnetic Waves.
Mar 9, 2005 GZK Neutrinos Theory and Observation D. Seckel, Univ. of Delaware.
Simulations of radio emission from cosmic ray air showers Tim Huege & Heino Falcke ARENA-Workshop Zeuthen,
Andrii Neronov JEM-EUSOJEM-EUSO. Problem of the origin of cosmic rays Galactic Extragalactic?
for the ARA collaboration,
ARENA2012, Erlangen June Lunar Space Missions for Ultrahigh- energy Cosmic Rays and Neutrinos Observation G. A. Gusev, V. A. Chechin, and V. A. Ryabov.
Laboratory Particle- Astrophysics P. Sokolsky High Energy Astrophysics Institute, Univ. of Utah.
RASTA: The Radio Air Shower Test Array Enhancing the IceCube Observatory M. A. DuVernois University of Wisconsin IceCube Research Center for the RASTA.
M.Chiba_ARENA20061 Measurement of Attenuation Length for Radio Wave in Natural Rock Salt and Performance of Detecting Ultra High- Energy Neutrinos M.Chiba,
The lunar Askaryan technique with the Square Kilometre Array Clancy James, Erlangen Centre for Astroparticle Physics (ECAP) 34th ICRC, The Hague, Netherlands.
RICE David Seckel, NeSS02, Washington DC, Sept ,/2002 R adio I ce C herenkov E xperiment PI presenter.
ARENA-2005 THE UPPER LIMIT TO THE EHE NEUTRINO FLUX FROM OBSERVATIONS OF THE MOON WITH KALYAZIN RADIO TELESCOPE. A.R.Beresnyak, R.D.Dagkesamanskiy, A.V.Kovalenko.
ANtarctic Impulsive Transient Antenna University of Hawaii at Manoa Peter Gorham, PI John Learned and Gary S. Varner Ohio-State University Jim Beatty and.
LUNACEE ( LUNar Cherenkov Emission Experiment) Radio-Frequency Measurements of Coherent Transition and Cherenkov Radiation: (hep-ex/ ) Implications.
Neutrinos and Z-bursts Dmitry Semikoz UCLA (Los Angeles) & INR (Moscow)
RICE: ICRC 2001, Aug 13, Recent Results from RICE Analysis of August 2000 Data See also: HE228: Ice Properties (contribution) HE241: Shower Simulation.
What we do know about cosmic rays at energies above eV? A.A.Petrukhin Contents 4 th Round Table, December , Introduction. 2. How these.
Studies of Askaryan Effect, 1 of 18 Status and Outlook of Experimental Studies of Askaryan RF Radiation Predrag Miocinovic (U. Hawaii) David Saltzberg.
RADIODETECTION AND CHARACTERIZATION OF THE COSMIC RAYS AIR SHOWER RADIO EMISSION FOR ENERGIES HIGHER THAN eV WITH THE CODALEMA EXPERIMENT Thomas.
31/03/2008Lancaster University1 Ultra-High-Energy Neutrino Astronomy From Simon Bevan University College London.
NEVOD-DECOR experiment: results and future A.A.Petrukhin for Russian-Italian Collaboration Contents MSU, May 16, New method of EAS investigations.
Olivier Deligny for the Pierre Auger Collaboration IPN Orsay – CNRS/IN2P3 TAUP 2007, Sendai Limit to the diffuse flux of UHE ν at EeV energies from the.
Jeong, Yu Seon Yonsei University Neutrino and Cosmic Ray Signals from the Moon Jeong, Reno and Sarcevic, Astroparticle Physics 35 (2012) 383.
Near-Field Effects of Cherenkov Radiation Induced by Ultra High Energy Cosmic Neutrinos Chih‐Ching Chen Collaboration with Chia-Yu Hu and Pisin Chen LeCosPA.
Detecting Ultra High Energy Neutrinos with LOFAR M.Mevius for the LOFAR NuMoon and CR collaboration.
Shih-Hao Wang 王士豪 Graduate Institute of Astrophysics & Leung Center for Cosmology and Particle Astrophysics (LeCosPA), National Taiwan University 1 This.
Bergische Universität Wuppertal Jan Auffenberg et al. Rome, Arena ARENA 2008 A radio air shower detector to extend IceCube ● Three component air.
LUNASKA UHE Neutrino Flux Limits - From Parkes Onwards The Lunar Cherenkov Technique – From Parkes Onwards R. Protheroe R. Crocker C. James D. Jones R.
Future high energy extensions of IceCube with new technologies: Radio and/or acoustical detectors Karle.
Lunar Radio Cerenkov Observations of UHE Neutrinos
Detecting UHE cosmic-rays and neutrinos hitting the Moon
LUNASKA The Directional Dependence of the Lunar Cherenkov Technique in Regards to UHE Neutrino Detection -C.W. James (University of Adelaide) IF we want.
Flux Limits for Ultra-High Energy Neutrinos
Discussion session: other (crazy
Harm Schoorlemmer, for the Pierre Auger Collaboration H. Schoorlemmer
Topics The case for remote radio detection of neutrinos
Recent Results of Point Source Searches with the IceCube Neutrino Telescope Lake Louise Winter Institute 2009 Erik Strahler University of Wisconsin-Madison.
Ron Ekers CSIRO Ginzburg Conference on Physics
Theoretical status of high energy cosmic rays and neutrinos
Cosmic ray and Neutrino Physics
Coherent radio-wave emission from extensive air showers.
The endpoint formalism for the calculation of electromagnetic radiation and its applications in astroparticle physics radiation from „endpoints“ antenna.
LOFAR Lightning Imaging (LOFLI)
David Saltzberg (UCLA)
Surrounding effects and sensitivity of the CODALEMA experiment
Analytic description of the radio emission of air showers based on its emission mechanisms Christian Glaser, Sijbrand de Jong, Martin Erdmann, Jörg Hörandel,
Acoustic vs radio vs optical detection of neutrino-induced cascades in ice and water Relevant papers by PBP: 1. Mechanisms of attenuation of acoustic.
for the Detection of UHE Cosmic Rays and Neutrinos
Presentation transcript:

Sept. 2010CRIS, Catania Olaf Scholten KVI, Groningen Physics Radio pulse results plans

Physics of Cosmic rays Spectrum is power law Flux ~ E -3 Non thermal spectrum! There must be sources! Where? What? End point? This talk: Measurement at highest E (NuMoon) F(E) [ m 2 sr s GeV ] -1 E [eV ] ← 32 orders of magnitude  ← 12 orders of magnitude  ← 1 [m -2 s -1 ] 1 [km -2 y -1 ] UHECR E -2.7 

Use the Moon!! Area = km 2 ≈ 1 / km 2 / sr / century above eV! Think Large

Sept. 2010CRIS, Catania Cosmic ray 100MHz Radio waves Detection: Westerbork antennas Principle of the measurement 10 7 km 2

Goldstone Lunar UHE Neutrino Search (GLUE) P. Gorham et al., PRL 93, (2004) Two antennas at JPL’s Goldstone, Calif. Tracking 2.2 GHz: l limits on >10 20 eV ’s l ~123 hours livetime Earlier experiment: 12 hrs using single Parkes 64m dish in Australia: T. Hankins et al., MNRAS 283, 1027 (1996) Detection off the Moon

Askaryan effect -1: Coherent Cherenkov emission ~10 cm ~2 m Cosmic ray shower Wave front Experiment at SLAC with beams of photons And e-/bunch: effective shower energies eV D. Saltzberg et al PRL 86 (2001) 2802 Basic emission mechanism

Askaryan effect -2: Coherent Cherenkov emission in air ~10 cm ~2 m Cosmic ray shower Wave front m Recent evidence: Askaryan effect in CR airshowers K.D. de Vries, AstroParticle Physics & arXiv: H. Schoorlemmer for PAO, ARENA 2010 Polarization radio signal: Transverse current, Geomagnetic : Charge excess, Askaryan: Wave front

Askaryan effect -3: Coherent Cherenkov emission Leading cloud of electrons, v  c Typical size of order 10cm Coherent Čerenkov for ν  2-5 GHz cos θ c =1/n, θ c =56 o for ∞ shower length Length of shower, L  few m Important for angular spreading ~10 cm ~2 m Cosmic ray shower Wave front Important magnitudes:

Cosmic rays, Position on Moon Calculations for E cr = eV With decreasing ν increasing probability: ∫ over surface Moon D  ν -3 3 GHz 100 MHz O.S. et al, Astropart.Phys. 26 (2006) GHz 100 MHz riminside

Sept. 2010CRIS, Catania Use Westerbork radio observatory NuMoon WSRT 2 bands over Moon 11 dishes of 25 m diameter, MHz band

Trigger: 4σ pulse in all four frequency bands + dedispersion dispersed pulse pulse visible after dedispersion time  frequency 

Pulse Power Spectrum Effect successive steps in analysis Timer signal Wide pulses Anti coincidence

Simulations fraction pulses recovered with S>77 Dispersed pulses of different strength added to experimental background Pulse limit: 120 σ 2 =240kJy DE=87.5% 1 Jy = W/m 2 /Hz

Results No pulse of 240kJy seen in 46.7 h data  90% confidence limit on neutrino flux O.S. et al, PRL 103(2009) Buitink, et al.,

Detecting cosmic rays - 1 Sept. 2010CRIS, Catania The question: Will showers, just below the lunar surface, emit Askaryan radiation? Is there a ‘formation zone’ ? S. ter Veen et al, submitted for publication Full solution wave equation with transmission In medium Passing through to vacuum

Detecting cosmic rays - 2 Sept. 2010CRIS, Catania The answer: No ‘formation zone’ ! S. ter Veen et al, submitted for publication Present limit from WSRT observation 1 week bservation limits LOFAR-core Full E-LOFAR

Sept. 2010CRIS, Catania Total collecting area 0.5 km 2 Cover whole moon, Sensitivity 25 times better than WSRT. Band: MHz NuMoon LOFAR New generation of radio-telescopes, many (3000) simple wire antennas

New generation telescopes: software beamforming Coherently add signal of antennas Delay determines viewing direction Multiple beams per station possible

Sept. 2010CRIS, Catania

Sept. 2010CRIS, Catania elofar

Neutrinos LOFAR, 30 days Theoretical predictions: Waxman-Bahcall limit GZK induced flux Phys.Rev.D64(04)93010 Topological defects AstroPhys. J. 479(97)547

Future: SKA LOFAR-core: 1 month SKA: 3 month observation, LFB: MHz MFB: MHz

Sept. 2010CRIS, Catania Conclusions WSRT: New limit for E > eV Future: LOFAR SKA Extend limit to lower E Improve Flux limit NuMoon collaboration: O.S., Stijn Buitink, Heino Falcke, Clancy James, Maaijke Mevius, Ben Stappers, Kalpana Singh, Richard Strom, Sander ter Veen

Sept. 2010CRIS, Catania Askaryan effect: confirmation in sand Experiment at SLAC with beams of photons And e-/bunch: effective shower energies eV 1 Jy = W/m 2 /Hz Angular spread Z 0 ~ λ /L D. Saltzberg et al PRL 86 (2001) 2802 Evidence in CR induced airshowers K.D. de Vries, AstroParticle Physics arXiv: arXiv: H. Schoorlemmer, (PAO) ARENA Jy = W/m 2 /Hz

Pierre Auger Pierre Auger, PRD79(2009) PRL103(2009)191301