Sept. 2010CRIS, Catania Olaf Scholten KVI, Groningen Physics Radio pulse results plans
Physics of Cosmic rays Spectrum is power law Flux ~ E -3 Non thermal spectrum! There must be sources! Where? What? End point? This talk: Measurement at highest E (NuMoon) F(E) [ m 2 sr s GeV ] -1 E [eV ] ← 32 orders of magnitude ← 12 orders of magnitude ← 1 [m -2 s -1 ] 1 [km -2 y -1 ] UHECR E -2.7
Use the Moon!! Area = km 2 ≈ 1 / km 2 / sr / century above eV! Think Large
Sept. 2010CRIS, Catania Cosmic ray 100MHz Radio waves Detection: Westerbork antennas Principle of the measurement 10 7 km 2
Goldstone Lunar UHE Neutrino Search (GLUE) P. Gorham et al., PRL 93, (2004) Two antennas at JPL’s Goldstone, Calif. Tracking 2.2 GHz: l limits on >10 20 eV ’s l ~123 hours livetime Earlier experiment: 12 hrs using single Parkes 64m dish in Australia: T. Hankins et al., MNRAS 283, 1027 (1996) Detection off the Moon
Askaryan effect -1: Coherent Cherenkov emission ~10 cm ~2 m Cosmic ray shower Wave front Experiment at SLAC with beams of photons And e-/bunch: effective shower energies eV D. Saltzberg et al PRL 86 (2001) 2802 Basic emission mechanism
Askaryan effect -2: Coherent Cherenkov emission in air ~10 cm ~2 m Cosmic ray shower Wave front m Recent evidence: Askaryan effect in CR airshowers K.D. de Vries, AstroParticle Physics & arXiv: H. Schoorlemmer for PAO, ARENA 2010 Polarization radio signal: Transverse current, Geomagnetic : Charge excess, Askaryan: Wave front
Askaryan effect -3: Coherent Cherenkov emission Leading cloud of electrons, v c Typical size of order 10cm Coherent Čerenkov for ν 2-5 GHz cos θ c =1/n, θ c =56 o for ∞ shower length Length of shower, L few m Important for angular spreading ~10 cm ~2 m Cosmic ray shower Wave front Important magnitudes:
Cosmic rays, Position on Moon Calculations for E cr = eV With decreasing ν increasing probability: ∫ over surface Moon D ν -3 3 GHz 100 MHz O.S. et al, Astropart.Phys. 26 (2006) GHz 100 MHz riminside
Sept. 2010CRIS, Catania Use Westerbork radio observatory NuMoon WSRT 2 bands over Moon 11 dishes of 25 m diameter, MHz band
Trigger: 4σ pulse in all four frequency bands + dedispersion dispersed pulse pulse visible after dedispersion time frequency
Pulse Power Spectrum Effect successive steps in analysis Timer signal Wide pulses Anti coincidence
Simulations fraction pulses recovered with S>77 Dispersed pulses of different strength added to experimental background Pulse limit: 120 σ 2 =240kJy DE=87.5% 1 Jy = W/m 2 /Hz
Results No pulse of 240kJy seen in 46.7 h data 90% confidence limit on neutrino flux O.S. et al, PRL 103(2009) Buitink, et al.,
Detecting cosmic rays - 1 Sept. 2010CRIS, Catania The question: Will showers, just below the lunar surface, emit Askaryan radiation? Is there a ‘formation zone’ ? S. ter Veen et al, submitted for publication Full solution wave equation with transmission In medium Passing through to vacuum
Detecting cosmic rays - 2 Sept. 2010CRIS, Catania The answer: No ‘formation zone’ ! S. ter Veen et al, submitted for publication Present limit from WSRT observation 1 week bservation limits LOFAR-core Full E-LOFAR
Sept. 2010CRIS, Catania Total collecting area 0.5 km 2 Cover whole moon, Sensitivity 25 times better than WSRT. Band: MHz NuMoon LOFAR New generation of radio-telescopes, many (3000) simple wire antennas
New generation telescopes: software beamforming Coherently add signal of antennas Delay determines viewing direction Multiple beams per station possible
Sept. 2010CRIS, Catania
Sept. 2010CRIS, Catania elofar
Neutrinos LOFAR, 30 days Theoretical predictions: Waxman-Bahcall limit GZK induced flux Phys.Rev.D64(04)93010 Topological defects AstroPhys. J. 479(97)547
Future: SKA LOFAR-core: 1 month SKA: 3 month observation, LFB: MHz MFB: MHz
Sept. 2010CRIS, Catania Conclusions WSRT: New limit for E > eV Future: LOFAR SKA Extend limit to lower E Improve Flux limit NuMoon collaboration: O.S., Stijn Buitink, Heino Falcke, Clancy James, Maaijke Mevius, Ben Stappers, Kalpana Singh, Richard Strom, Sander ter Veen
Sept. 2010CRIS, Catania Askaryan effect: confirmation in sand Experiment at SLAC with beams of photons And e-/bunch: effective shower energies eV 1 Jy = W/m 2 /Hz Angular spread Z 0 ~ λ /L D. Saltzberg et al PRL 86 (2001) 2802 Evidence in CR induced airshowers K.D. de Vries, AstroParticle Physics arXiv: arXiv: H. Schoorlemmer, (PAO) ARENA Jy = W/m 2 /Hz
Pierre Auger Pierre Auger, PRD79(2009) PRL103(2009)191301