THE MICROWAVE STUDIES OF GUAIACOL (2-METHOXYPHENOL), ITS ISOTOPOLOGUES & VAN DER WAALS COMPLEXES Ranil M. Gurusinghe, Ashley Fox and Michael J. Tubergen,

Slides:



Advertisements
Similar presentations
Infrared spectra of OCS-C 6 H 6, OCS-C 6 H 6 -He and OCS-C 6 H 6 -Ne van der Waals Complexes M. Dehghany, J. Norooz Oliaee, Mahin Afshari, N. Moazzen-Ahmadi.
Advertisements

HIGH RESOLUTION INFRARED SPECTROSCOPY OF N 2 O-C 4 H 2 AND CS 2 −C 2 D 2 DIMERS MAHDI YOUSEFI S. SHEYBANI-DELOUI JALAL NOROOZ OLIAEE BOB MCKELLAR NASSER.
Galen Sedo, Jamie L. Doran, Shenghai Wu, Kenneth R. Leopold Department of Chemistry, University of Minnesota A Microwave Determination of the Barrier to.
Rotational Spectra of Methylene Cyclobutane and Argon-Methylene Cyclobutane Wei Lin, Jovan Gayle Wallace Pringle, Stewart E. Novick Department of Chemistry.
The Study of Noble Gas – Noble Metal Halide Interactions: Fourier Transform Microwave Spectroscopy of XeCuCl Julie M. Michaud and Michael C. L. Gerry University.
The inversion motion in the Ne – NH 3 van der Waals dimer studied via microwave spectroscopy Laura E. Downie, Julie M. Michaud and Wolfgang Jäger Department.
Microwave Spectroscopy and Proton Transfer Dynamics in the Formic Acid-Acetic Acid Dimer Brian Howard, Edward Steer, Michael Tayler, Bin Ouyang (Oxford.
Gas Phase Conformational Distributions
DANIEL P. ZALESKI, JUSTIN L. NEILL, MATTHEW T. MUCKLE, AMANDA L. STEBER, NATHAN A. SEIFERT, AND BROOKS H. PATE Department of Chemistry, University of Virginia,
Maria Eugenia Sanz, Carlos Cabezas, Santiago Mata, José L. Alonso The Rotational Spectrum of Tryptophan.
Theoretical Modelling of the Water Dimer: Progress and Current Direction Ross E. A. Kelly, Matt Barber, & Jonathan Tennyson Department of Physics & Astronomy.
Microwave Spectrum of Hydrogen Bonded Hexafluoroisopropanol  water Complex Abhishek Shahi Prof. E. Arunan Group Department of Inorganic and Physical.
Joseph A. Fournier, Robert K. Bohn, John A. Montgomery, Jr. University of Connecticut, Storrs, CT Microwave Spectroscopy and Structures of Perfluorohexane.
Microwave Spectroscopic Investigations of the C—H…  Containing Complexes CH 2 F 2 …Propyne and CH 2 ClF…Propyne Rebecca A. Peebles, Sean A. Peebles, Cori.
THE PURE ROTATIONAL SPECTRA OF THE TWO LOWEST ENERGY CONFORMERS OF n-BUTYL ETHYL ETHER. B. E. Long, G. S. Grubbs II, and S. A. Cooke RH13.
Physique des Lasers, Atomes et Molécules
Chirped-pulse, FTMW spectroscopy of the lactic acid-H 2 O system Zbigniew Kisiel, a Ewa Białkowska-Jaworska, a Daniel P. Zaleski, b Justin L. Neill, b.
Rotational Spectra and Structure of Phenylacetylene-Water Complex and Phenylacetylene-H 2 S (preliminary) Mausumi Goswami, L. Narasimhan, S. T. Manju and.
Microwave Spectrum and Molecular Structure of the Argon-(E )-1-Chloro-1,2-Difluoroethylene Complex Mark D. Marshall, Helen O. Leung, Hannah Tandon, Joseph.
Microwave Studies of Glycerol F.J. Lovas, and D.F Plusquellic NIST and V.V. Ilyushin and R.A. Motiyenko Institute of Radio Astronomy of NASU.
The Pure Rotational Spectrum of Pivaloyl Chloride, (CH 3 ) 3 CCOCl, between 800 and MHz. Garry S. Grubbs II, Christopher T. Dewberry, Kerry C. Etchison,
Grupo de Espectroscopia Molecular, Unidad Asociada CSIC Laboratorios de Espectroscopia y Bioespectroscopia Edificio Quifima. Parque Científico Universidad.
Fundamentals and Torsional Combination Bands of Two Isomers of the OCS-CO 2 Complex J. Norooz Oliaee, M. Dehghany, F. Mivehvar, Mahin Afshari, N. Moazzen-Ahmadi.
Rotationally-Resolved Spectroscopy of the Bending Modes of Deuterated Water Dimer JACOB T. STEWART AND BENJAMIN J. MCCALL DEPARTMENT OF CHEMISTRY, UNIVERSITY.
Deuterated water hexamer observed by chirped-pulse rotational spectroscopy International Symposium on Molecular Spectroscopy, 69 th Meeting Champaign-Urbana,
61st OSU International Symposium on Molecular Spectroscopy RI12 Rotational spectrum, electric dipole moment and structure of salicyl aldehyde Zbigniew.
RANIL M. GURUSINGHE, MICHAEL TUBERGEN Department of Chemistry and Biochemistry, Kent State University, Kent, OH. RANIL M. GURUSINGHE, MICHAEL TUBERGEN.
Fourier transform microwave spectra of CO–dimethyl sulfide and CO–ethylene sulfide Akinori Sato, Yoshiyuki Kawashima and Eizi Hirota * The Graduate University.
Bri Gordon Steven T. Shipman New College of Florida
Conformational Flexibility in Hydrated Sugars: The Glycolaldehyde-Water Complex Juan-Ramon Aviles-Moreno, Jean Demaison and Thérèse R. Huet Laboratoire.
Effective C 2v Symmetry in the Dimethyl Ether–Acetylene Dimer Sean A. Peebles, Josh J. Newby, Michal M. Serafin, and Rebecca A. Peebles Department of Chemistry,
OSU-05 TA 101 The Structure of Ethynylferrocene using Microwave Spectroscopy. Ranga Subramanian, Chandana Karunatilaka, Kristen Keck and Stephen Kukolich.
Perfluorobutyric acid and its monohydrate: a chirped pulse and cavity based Fourier transform microwave spectroscopic study Javix Thomas a, Agapito Serrato.
The Ohio State University International Symposium on Molecular Spectroscopy 68th Meeting - - June 17-21, 2013 Microwave Spectrum of Hexafluoroisopropanol,
Rotational Spectra Of Cyclopropylmethyl Germane And Cyclopropylmethyl Silane: Dipole Moment And Barrier To Methyl Group Rotation Rebecca A. Peebles, Sean.
Microwave Spectrum of the Ethanol-Water Dimer
Intermolecular Interactions between Formaldehyde and Dimethyl Ether and between Formaldehyde and Dimethyl Sulfide in the Complex, Investigated by Fourier.
The rotational spectra of helium- pyridine and hydrogen molecule- pyridine clusters Chakree Tanjaroon and Wolfgang Jäger.
Determination of the Structure of Cyclopentanone and Argon and Neon Cyclopentanone van der Waals Complexes 40 Ar 36 Ar 20 Ne 22 Ne 18 O 99.6% 0.33% 90.5%
S TRUCTURE D ETERMINATION AND CH···F I NTERACTIONS IN H 2 C=CHF···H 2 C=CF 2 B Y F OURIER - T RANSFORM M ICROWAVE S PECTROSCOPY Rachel E. Dorris, Rebecca.
Rotational Spectroscopic Investigations Of CH 4 ---H 2 S Complex Aiswarya Lakshmi P. and E. Arunan Inorganic and Physical Chemistry Indian Institute of.
1 -RJ16- NON COVALENT INTERACTIONS AND INTERNAL DYNAMICS IN ADDUCTS OF FREONS 69 th Symposium, Urbana-Champaign, June 16-20, 2012 Dipartimento di Chimica.
Broadband Microwave Spectroscopy to Study the Structure of Odorant Molecules and of Complexes in the Gas Phase Sabrina Zinn, Chris Medcraft, Thomas Betz,
Determination of the Structure of Neon Cyclopentanone Wei Lin, Andrea J. Minei, Andrew H. Brooks, Wallace C. Pringle, Stewart E. Novick Department of Chemistry.
High Resolution Electronic Spectroscopy of 9-Fluorenemethanol (9FM) in the Gas Phase Diane M. Mitchell, James A.J. Fitzpatrick and David W. Pratt Department.
High-resolution mid-infrared spectroscopy of deuterated water clusters using a quantum cascade laser- based cavity ringdown spectrometer Jacob T. Stewart.
CHIRPED PULSE AND CAVITY FT MICROWAVE SPECTROSCOPY OF THE HCOOH – N(CH 3 ) 3 WEAKLY BOUND COMPLEX Rebecca B. Mackenzie, Christopher T. Dewberry, and Kenneth.
The Rotational Spectrum of the Water–Hydroperoxy Radical (H 2 O–HO 2 ) Complex Kohsuke Suma, Yoshihiro Sumiyoshi, and Yasuki Endo Department of Basic Science,
Microwave Spectroscopic Investigations of the Xe-H 2 O and Xe-(H 2 O) 2 van der Waals Complexes Qing Wen and Wolfgang Jäger Department of Chemistry, University.
Spectroscopic and Ab Initio Studies of the Open-Shell Xe-O 2 van der Waals Complex Qing Wen and Wolfgang Jäger Department of Chemistry, University of Alberta,
Rotational Spectra of Adducts of Formaldehyde with Freons Qian Gou, 1 Gang Feng, 1 Luca Evangelisti, 1 Montserrat Vallejo-López, 2 Alberto Lesarri, 2 Walther.
Fourier-transform microwave spectroscopy of the CCCCl radical Takashi Yoshikawa, Yoshihiro Sumiyoshi, and Yasuki Endo Graduate School of Arts and Sciences,
Rotational Spectra and Structure of PhenylacetyleneH2S complex
ROTATIONAL SPECTROSCOPY OF THE METHYL GLYCIDATE-WATER COMPLEX
Determination of the Structures of Cyclopentanone and of the Argon Cyclopentanone van der Waals Complex Andrew H. Brooks, Wei Lin, Wallace C. Pringle and.
Department of Chemistry *Department of Chemistry, Mt. Holyoke College,
1Kanagawa Institute of Technology 3Georgia Southern University
Carlos Cabezas and Yasuki Endo
Aimee Bell, Omar Mahassneh, James Singer,
M. Rezaei, J. George, L. Welbanks, and N. Moazzen-Ahmadi
Microwave spectra of 1- and 2-bromobutane
Methylstyrenes – Microwave Spectroscopy
Fourier transform microwave spectra of n-butanol and isobutanol
MICROWAVE SPECTRA FOR THE THREE 13C1 ISOTOPOLOGUES OF PROPENE AND NEW ROTATIONAL CONSTANTS FOR PROPENE AND ITS 13C1 ISOTOPOLOGUES NORMAN C. CRAIG, Department.
Ashley M. Anderton, Cori L. Christenholz, Rachel E. Dorris, Rebecca A
Methylindoles – Microwave Spectroscopy
BROADBAND MICROWAVE SPECTROSCOPY AS A TOOL TO STUDY DISPERSION INTERACTIONS IN CAMPHOR-ALCOHOL SYSTEMS MARIYAM FATIMA, CRISTÓBAL PÉREZ, MELANIE SCHNELL,
Wei Lin, Anan Wu, Zin Lu, Daniel A. Obenchain, Stewart E. Novick
Michal M. Serafin, Sean A. Peebles
THE MICROWAVE SPECTRUM AND UNEXPECTED STRUCTURE OF THE BIMOLECULAR COMPLEX FORMED BETWEEN ACETYLENE AND (Z)-1-CHLORO-2-FLUOROETHYLENE Nazir D. Khan, Helen.
Presentation transcript:

THE MICROWAVE STUDIES OF GUAIACOL (2-METHOXYPHENOL), ITS ISOTOPOLOGUES & VAN DER WAALS COMPLEXES Ranil M. Gurusinghe, Ashley Fox and Michael J. Tubergen, Department of Chemistry, Kent State University, Kent, Ohio

Motivation Intramolecular hydrogen bonding & conformational preferences Conformational changes upon forming van-der-Waals complexes :  Ar complex  Water complex GUAIACOL (2-METHOXYPHENOL)

Background Monomer2-aminoethanol-Ar 2-aminoethanol-water

Background Monomer Glycidol-Water

Guaiacol: Previous Ab initio Studies C. Agache and V. I. Popa, Monatsh. Chem. 137 (2006) 55-68

Previous Ab initio Studies global minimum kJ mol kJ mol -1 planar Non-planar Intramolecular H bond – kJ mol O. V. Dorofeeva, et al., J. Mol. Struct. 933 (2009)

Ab initio Studies MP2/ G(d,p) anti-synanti-antigauche-anti A / MHz B / MHz C / MHz µ a / D µ b / D µ c / D Relative Energy/kJ mol

Kent State FTMW Spectrometer Range : MHz Resolution : 2.4 kHz Carrier Gas :  He(30%)/Ne  Ar Temperature : 25 – 60 0 C Backing pressure : 1.5 atm Hydroxyl deuterated guaiacol prepared by stirring of guaiacol with D 2 O in 1:1 ratio for 48 hrs

Guaiacol Spectrum Experimental Results A/MHz (6) Δ K /kHz (3) B/MHz (2) δ J /kHz (1) C/MHz (1) δ K /kHz (1) Δ J /kHz (2) N 52 Δ JK /kHz (13) Δν rms Optimized anti-syn conformation Ab initio Results A / MHz B / MHz C / MHz

Spectroscopic Constants Normal 13 C(2) 13 C(3) 13 C(5) 13 C(7) 13 C( 8) 13 C(9) 13 C(14) 2 H(12) A/MHz (6) (5) (6) (4) (6) (7) (4) (9) (11) B/MHz (2) (3) (2) (4) (4) (4) (2) (4) (5) C/MHz (1) (1) (2) (2) (1) (1) (1) (2) (2) Δ J /kHz (2) (5) (2) (8) (7) (7) (4) (7) (8) Δ JK /kHz (13) (28) (14) (36) (3) (3) (19) (37) (41) Δ K /kHz (3) (7) (5) (80) (8) (9) (5) (7) (10) δ J /kHz (1) (2) (1) (4) (3) (3) (2) (3) (4) δ K /kHz (1) (3) (13) (6) (3) (3) (2) (4) (39) N Δν rms

Principal-Axis-System Coordinates of 13 C and 2 H from: Kraitchman Analysis & Ab-initio Method Isotopomer KraitchmanAb-initio | a| / Å| b| / Å| c| / Å a / Å b / Åc / Å 13 C(2) C(3) i C(5) i C(7) C(8) C(9) C(14) H(12)

Guaiacol-Ar: Ab Initio Studies MP2/ G(d,p) Structure Dipole Moments / DRotational Constants / MHz Relative E/ kJ mol -1 µaµa µbµb µcµc ABC Optimized Guaiacol-Ar complex 1 2 3

Guaiacol-Ar Spectrum Experimental Results A/MHz (14)Δ K /kHz (3) B/MHz (7)δ J /kHz (1) C/MHz (1)δ K /kHz (12) Δ J /kHz (3)N43 Δ JK /kH z (24)Δν rms Ab initio Results A / MHz B / MHz C / MHz

Principal-Axis-System Coordinates of Ar atom from: Kraitchman Analysis & Ab Initio Method More Ab-initio modeling need to be done for Guaiacol-Ar complex KraitchmanAb –Initio | a| / Å| b| / Å| c| / Å a / Å b / Åc / Å

Guaiacol-Water Complex Ab Initio Studies: MP2/ G(d,p) Structure Dipole Moments / D Rotational Constants / MHz Relative E/ kJ mol -1 µaµa µbµb µcµc ABC

Summary Ab initio calculations & rotational spectra for guaiacol, its isotopologues, Ar & water complexes Lowest energy conformation of guaiacol accommodates intramolecular hydrogen bonding Guaiacol-Ar : More modeling need to be done Guaiacol-Water : Work in progress

Acknowledgements Ohio Super Computer Center Kent State University, Kent, Ohio

Principal-Axis-System Coordinates of 13 C and 2 H from: Kraitchman Analysis & Ab-initio Method Isotopo mer KraitchmanAb-initio | a| / Å| b| / Å| c| / Å a / Å b / Åc / Å 13 C(2)2.2843(6)0.5690(26)0.0082(1828) C(3)1.4021(11)1.6485(9) I(-1020 i) C(5) I(-165i)1.4285(10)0.0249(601) C(7)0.4484(33)0.0885(169)0.0261(573) C(8)0.4142(36)0.9553(15)0.0075(1998) C(9)1.7929(8)0.7352(20)0.0226(663) C(14)2.7487(5)0.8002(18)0.0119(1255) H(12)1.0230(14)2.1655(6)0.0644(232)

Guaiacol-Ar models: Structures 1 & Å, 3.22 Å3.349 Å, Å 1212

Hydroxyl deuterated Guaiacol Preparation Rapid stirring of guaiacol with D 2 O in 1:1 ratio for 48 hrs Filtered out the organic layer Dried in a desiccator for another 48 hours Confirmed with NMR spectroscopy