Структура электродинамических сил, ускорение плазмы и генерация обратных токов в токовых слоях А.Г. Франк, Н.П. Кирий, С.Н. Сатунин Институт общей физики.

Slides:



Advertisements
Similar presentations
Particle acceleration in a turbulent electric field produced by 3D reconnection Marco Onofri University of Thessaloniki.
Advertisements

Chapter 8 The Sun – Our Star.
1 CENTER for EDGE PLASMA SCIENCES C E PS Status of Divertor Plasma Simulator – II (DiPS-II) 2 nd PMIF Workshop Sep. 19, 2011 Julich, Germany H.-J. Woo.
Tomsk Polytechnic University1 A.S. Gogolev A. P. Potylitsyn A.M. Taratin.
OPOLEOpole University Institute of Physics, Plasma Spectroscopy Group I am from.. 1.
Reviewing the Summer School Solar Labs Nicholas Gross.
Shock wave propagation across the column of dusted glow discharge in different gases. A.S.Baryshnikov, I.V.Basargin, M.V.Chistyakova Ioffe Physico-Technical.
Further development of modeling of spatial distribution of energetic electron fluxes near Europa M. V. Podzolko 1, I. V. Getselev 1, Yu. I. Gubar 1, I.
Non-Equilibrium Ionization Modeling of the Current Sheet in a Simulated Solar Eruption Chengcai Shen Co-authors: K. K. Reeves, J. C. Raymond, N. A. Murphy,
TEST GRAINS AS A NOVEL DIAGNOSTIC TOOL B.W. James, A.A. Samarian and W. Tsang School of Physics, University of Sydney NSW 2006, Australia
1 Introduction to Plasma Immersion Ion Implantation Technologies Emmanuel Wirth.
General Properties Absolute visual magnitude M V = 4.83 Central temperature = 15 million 0 K X = 0.73, Y = 0.25, Z = 0.02 Initial abundances: Age: ~ 4.52.
“The Role of Atomic Physics in Spectroscopic Studies of the Extended Solar Corona” – John Kohl “High Accuracy Atomic Physics in Astronomy”, August.
1 Diagnostics of Solar Wind Processes Using the Total Perpendicular Pressure Lan Jian, C. T. Russell, and J. T. Gosling How does the magnetic structure.
Runaway Electron Mitigation Collaboration on J-TEXT David Q. Hwang UC Davis Sixth US-PRC Magnetic Fusion Collaboration Workshop Collaborating Institutions:
Winds of cool supergiant stars driven by Alfvén waves
HEAT TRANSPORT andCONFINEMENTin EXTRAP T2R L. Frassinetti, P.R. Brunsell, M. Cecconello, S. Menmuir and J.R. Drake.
Magnetic Reconnection Rate and Energy Release Rate Jeongwoo Lee 2008 April 1 NJIT/CSTR Seminar Day.
European Joint PhD Programme, Lisboa, Diagnostics of Fusion Plasmas Spectroscopy Ralph Dux.
Plasma Kinetics around a Dust Grain in an Ion Flow N F Cramer and S V Vladimirov, School of Physics, University of Sydney, S A Maiorov, General Physics.
Physics of fusion power Lecture 7: particle motion.
2 Lasers: Centimeters instead of Kilometers ? If we take a Petawatt laser pulse, I=10 21 W/cm 2 then the electric field is as high as E=10 14 eV/m=100.
ABSTRACT This work concerns with the analysis and modelling of possible magnetohydrodynamic response of plasma of the solar low atmosphere (upper chromosphere,
NON-EQUILIBRIUM HEAVY GASES PLASMA MHD-STABILIZATION IN AXISYMMETRIC MIRROR MAGNETIC TRAP A.V. Sidorov 2, P.A. Bagryansky 1, A.D. Beklemishev 1, I.V. Izotov.
1 ST workshop 2005 Numerical modeling and experimental study of ICR heating in the spherical tokamak Globus-M O.N.Shcherbinin, F.V.Chernyshev, V.V.Dyachenko,
Numerical simulations are used to explore the interaction between solar coronal mass ejections (CMEs) and the structured, ambient global solar wind flow.
ГЕНЕРАЦИЯ И ВЫХОД АВРОРАЛЬНОГО КИЛОМЕТРОВОГО ИЗЛУЧЕНИЯ ИЗ НЕСТАЦИОНАРНОЙ КАВЕРНЫ Т. М. Буринская ИКИ РАН, г. Москва, Россия.
Spectroscopy Department Lebedev Physical Institute Moscow Solar Extreme Events: Fundamental Science and Applied Aspects (SEE-2005) International Symposium.
Solution Due to the Doppler effect arising from the random motions of the gas atoms, the laser radiation from gas-lasers is broadened around a central.
Correlation Analysis of Electrostatic Fluctuation between Central and End Cells in GAMMA 10 Y. Miyata, M. Yoshikawa, F. Yaguchi, M. Ichimura, T. Murakami.
Magnetic Field A magnetic field is a region in which a body with magnetic properties experiences a force.
TIME-RESOLVED OPTICAL SPECTROSCOPY OF HIGH-TEMPERATURE PLASMAS M.J. Sadowski  , K. Malinowski , E. Skladnik-Sadowska , M. Scholtz , A. Tsarenko ¤
N. Yugami, Utsunomiya University, Japan Generation of Short Electromagnetic Wave via Laser Plasma Interaction Experiments US-Japan Workshop on Heavy Ion.
T.M. Biewer, Oct. 20 th, 2003NSTX Physics Meeting1 T. M. Biewer, R.E. Bell October 20 th, 2003 NSTX Physics Meeting Princeton Plasma Physics Laboratory.
Tunable, resonant heterodyne interferometer for neutral hydrogen measurements in tokamak plasmas * J.J. Moschella, R.C. Hazelton, M.D. Keitz, and C.C.
Recent Results on the Plasma Wakefield Acceleration at FACET E 200 Collaboration 1)Beam loading due to distributed injection of charge in the wake reduces.
Why Solar Electron Beams Stop Producing Type III Radio Emission Hamish Reid, Eduard Kontar SUPA School of Physics and Astronomy University of Glasgow,
SOHO-20 “Transient events on the Sun and In the Heliosphere” – August 28, 2008, Ghent SOHO-20 “Transient events on the Sun and In the Heliosphere” – August.
J. Hasegawa, S. Hirai, H. Kita, Y. Oguri, M. Ogawa RLNR, TIT
Адиабатический нагрев электронов в хвосте магнитосферы. Физика плазмы в солнечной системе» февраля 2012 г., ИКИ РАН Зеленый Л.М., Артемьев А.В.,
Nonlinear Optics in Plasmas. What is relativistic self-guiding? Ponderomotive self-channeling resulting from expulsion of electrons on axis Relativistic.
Current Sheets from WL and UV data: open questions Alessandro Bemporad INAF – Arcetri Astrophysical Observatory 1° ISSI Group Meeting October 23-27, 2006,
Spectral Signature of Emergent Magnetic Flux D1 神尾 精 Solar Seminar Balasubramaniam,K.S., 2001, ApJ, 557, 366. Chae, J. et al., 2000, ApJ, 528,
Effective drift velocity and initiation times of interplanetary type-III radio bursts Dennis K. Haggerty and Edmond C. Roelof The Johns Hopkins University.
HIGH ENERGY DENSITY PHYSICS: RECENT DEVELOPMENTS WITH Z PINCHES N. Rostoker, P. Ney, H. U. Rahman, and F. J. Wessel Department of Physics and Astronomy.
- Preliminary results from temperature modeling using the CIII 97.7 nm / CIV 155 nm line ratio give an average plasma temperature of 25 eV early in counter-helicity.
Enhancing the Macroscopic Yield of Narrow-Band High-Order Harmonic Generation by Fano Resonances Muhammed Sayrac Phys-689 Texas A&M University 4/30/2015.
Sgr B2 Galactic Center Survey with Chandr Radio Arc 1 Sgr A East : Young SNR 2 The GC Hot Plasma : 10keV 3 Sgr B2, Radio Arc : Molecular Clouds ~2 x 1.
Multipactor Phenomenon in Dielectric-Loaded Accelerating Structures: Review of Theory and Code Development O. V. Sinitsyn, G. S. Nusinovich and T. M. Antonsen,
A. Vaivads, M. André, S. Buchert, N. Cornilleau-Wehrlin, A. Eriksson, A. Fazakerley, Y. Khotyaintsev, B. Lavraud, C. Mouikis, T. Phan, B. N. Rogers, J.-E.
Radio Sounding of the Near-Sun Plasma Using Polarized Pulsar Pulses I.V.Chashei, T.V.Smirnova, V.I.Shishov Pushchino Radio Astronomy Obsertvatory, Astrospace.
-1- Solar wind turbulence from radio occultation data Chashei, I.V. Lebedev Physical Institute, Moscow, Russia Efimov, A.I., Institute of Radio Engineering.
UV Spectroscopy of CME Currrent Sheets John Raymond Angela Ciaravella Silvio Giordano Dave Webb.
XUV monochromatic imaging spectroscopy in the SPIRIT experiment on the CORONAS-F mission I. Diagnostics of solar corona plasma by means of EUV Spectroheliograph.
Some EOVSA Science Issues Gregory Fleishman 26 April 2011.
Физика плазмы в солнечной системе – 10-я конференция, ИКИ РАН, Эксперимент ФИЛА-РОМАР – плазменные измерения на поверхности кометы 67Р/ Чурумов-Герасименко.
Large Area Plasma Processing System (LAPPS) R. F. Fernsler, W. M. Manheimer, R. A. Meger, D. P. Murphy, D. Leonhardt, R. E. Pechacek, S. G. Walton and.
1 Temperature effect of the muon component of cosmic ray and practical possibilities of its accounting Berkova M., Belov A., Smirnov D., Eroshenko E.,
APS, 44th Annual Meeting of the Division of Plasma Physics November 11-15, 2002; Orlando, Florida Hard X-ray Diagnostics in the HSX A. E. Abdou, A. F.
The Heavy Ion Fusion Virtual National Laboratory Erik P. Gilson** PPPL 15 th International Symposium on Heavy Ion Fusion June 9 th, 2004 Research supported.
Plan V. Rozhansky, E. Kaveeva St.Petersburg State Polytechnical University, , Polytechnicheskaya 29, St.Petersburg, Russia Poloidal and Toroidal.
Hard X-rays from Superthermal Electrons in the HSX Stellarator Preliminary Examination for Ali E. Abdou Student at the Department of Engineering Physics.
Munib Amin Institute for Laser and Plasma Physics Heinrich Heine University Düsseldorf Laser ion acceleration and applications A bouquet of flowers.
X-ray Spectroscopy of Coronal Plasmas Ken Phillips Scientific Associate, Natural History Museum, and Honorary Prof., QUB 1.
Sun: General Properties
Seok-geun Lee, Young-hwa An, Y.S. Hwang
Progress Toward Measurements of Suprathermal Proton Seed Particle Populations J. Raymond, J. Kohl, A. Panasyuk, L. Gardner, and S. Cranmer Harvard-Smithsonian.
Series of high-frequency slowly drifting structure mapping the magnetic field reconnection M. Karlicky, A&A, 2004, 417,325.
Alfven Oscillations in the TUMAN-3M Tokamak Ohmic Regime
Evidence for magnetic reconnection in the high corona
Presentation transcript:

Структура электродинамических сил, ускорение плазмы и генерация обратных токов в токовых слоях А.Г. Франк, Н.П. Кирий, С.Н. Сатунин Институт общей физики им. А.М. Прохорова РАН VI Конференция «Физика плазмы в солнечной системе» в рамках Программы ОФН-15 РАН «Плазменные процессы в солнечной системе» 18 февраля 2011 г.

Цели и задачи исследований = Изучение динамики токовых слоев и процессов магнитного пересоединения на основе лабораторных экспериментов позволяют сопоставлять структуру магнитных полей, электрических токов и электродинамических сил, с одной стороны, с параметрами плазменных потоков, которые ускоряются в пределах слоя, с другой стороны. = В лабораторных экспериментах были зарегистрированы направленные движения плазмы со сверхтепловыми скоростями, которые можно, по-видимому, интерпретировать как аналог корональных выбросов массы (CME). Эти исследования дают возможность приблизиться к пониманию физической природы динамических явлений в атмосфере Солнца. Основные задачи данной работы: = Определение пространственно-временных характеристик электрического тока и электродинамических сил на основе анализа магнитных полей токовых слоев, развивающихся в различных условиях; = Регистрация направленных потоков плазмы, которые генерируются в токовых слоях; = Сопоставление направленных скоростей и энергий плазменных потоков с работой сил Ампера; выявление характерных особенностей ускорения плазмы.

Schematic of the CS-3D device = 2D magnetic field B  = {-h  y; -h  x; 0} with the null-line at the z-axis, h  1 kG/cm; = Guide field B z aligned with the null line: B z  8 kG; = Superposition of B  and B z forms a 3D magnetic configuration with the X line; = Vacuum chamber: quartz,  18 cm, L = 100 cm, is filled with a gas: He, Ar, Kr or Xe; = The initial plasma, N e 0 =  cm -3, is produced by  -discharge; = Both magnetic fields and the initial plasma are uniform in the z-direction: ∂/∂z = 0; = Current along the X line: J z  100 kA, T / 2 = 6  s, results in current sheet formation; = Diagnostics: magnetic probes, interference-holography; spectroscopy, X-ray detectors. Cross-sectionSide view

Propagation of the magneto-acoustic wave and the in-plane plasma motions in the vicinity of the X line Magnetic field with the X line: B = {-h  y; -h  x; B Z } Perturbations of the magnetic field propagate as a converging magneto-acoustic wave (MAW) toward the X line in the (x, y) plane. A typical time interval for MAW propagation is defined by the local Alfven velocity: t A = (4  N i M i ) 1/2 / h. Plasma current: j = c /(4  ) rot B. Plasma dynamics is controlled by the Ampere forces: f = 1/c [j  B]. Excitation of j Z currents behind the front of MAW brings about plasma compression in the y – direction and the outward motion in the x – direction.

Kr, p=36 mTorr; h=0.57 kG/cm; B Z 0 = kG; J Z =70 kA Formation of a current sheet in magnetic field with an X line ( in- plane component  B X ) Amplification of the excess guide field  B Z A.G. Frank, S.G. Bugrov, V.S. Markov // Phys. Lett. A 373, 1460 (2009)

Structure of the magnetic force lines in the (x, y) plane: A Z = const;  A Z = 10 3 G  cm 2D vacuum magnetic field Ar 20 mTorr; h = 0.64 kG/cm; J Z = 65 kA; t = 1.9  s In-plane magnetic field of the current sheet

2D distributions of plasma density at successive time moments t = 2.95 μs t = 3.95 μs t = 4.35 μs h = 0.43 kG/cm; B Z 0 = 2.9 kG; Ar filling, 28 mTorr; J Z max = 50 kA = Formation of a current sheet is accompanied by effective plasma compression into the sheet, with the maximum density  10 times higher than the initial density: N e max  cm -3 = Plasma sheet can evolve in the 3D magnetic configuration, in the presence of the strong guide field B Z 0 along the X line. Frank A G et al. Phys. Plasmas (2005)

As the temperature increases, Ar +1 and Ar +2 ions become depleted successively turning to higher ionization states. As a result, the spectral lines Ar IV, Ar V, with Ar VI in some cases, should appear in the plasma emission spectrum. These lines, however, fall within a shorter-wavelength UV range (λ < 300 nm). Time evolution of plasma parameters in the sheet midplane:  Effective ion charge Z eff  Densities of argon ions N i (Ar +1 ÷ Ar +5 )  Electron density N e  Electron temperature T e Voronov G.S. et al. Plasma Phys. Rep. 34, 999 (2008) h = 430 G/cm; Ar, 28 mTorr; J z max = 70 kA

Current distribution in the (x,y) plane is characterized by 2 different sizes:  x /  y  6  15 Ar, 20 mTorr; h = 0.64 kG /cm; J Z max = 65 kA; t = 1.9  s In-plane magnetic field components B X, B Y and current density j Z in the current sheet Distributions along the sheet width (x-axis), y = 0.8 cm Distributions along the sheet thickness (y-axis), x = 0.8 cm and x =-5 cm

Evolution of the current density j z 0 in the CS midplane and the y-dimensions of CS at the levels 0.5  j z 0 and 0.1  j z 0 Ar, x = 0.8 cm He, x = 0.8 cm He, x = -5 cm Ar, x = -5 cm

Scheme of two-channel spectral measurements with the use of a Nanogate 1-UF fast programmable CCD camera Ø z  1.5 cm Ø x  2.5 cm

Time behavior of the ion temperature T i and averaged energy of plasma flows W x Ar, 28 mTorr, h = 0.5 kG/cm, J z  75 kA Kyrie N.P. et al. Plasma Phys. Rep.36, 357 (2010) = T i, T e, Z i,av are maximum in the sheet midplane and increase with time; = T i > T e = The plasma is in transverse equilibrium (along the y-axis) with the magnetic field: N e (T e +T i /Z i ) + (  B Z ) 2 /8    B X 2 /8  ;   1

The Ampere force F x acting along the current sheet surface  = 1.2 cm I z (x) = – c /2   {B x J (x) – [  B y J (x)/  x]   };  j z (x) = I z (x) / 2  F x (x) = f x (x)  2  = -1/c  I z (x)  B y T (x); B y T = h  x + B y J   h = 0.57 kG/cm B Z 0 = 0 (2D) Ar, 28 mTorr J Z  100 kA; t  1.9  s F x max  6  10 5 dynes  cm -2

Plasma acceleration along the current sheet surface M i  N i  dv/dt = -  p + 1/c  [j  B] =  p is negligible along the current sheet surface (x-direction). = In the 2D magnetic configurations (B z = 0) the Ampere forces f x сome to play only in the presence of the normal magnetic field component B y T : f x = 1/c  [j  B] x ≡ -1/c  (j z  B y T ) = The average density of the Ampere force f X (x) was calculated on the basis of magnetic measurements:  f x (x)  -1/c  I z (x)  B y T (x) / 2   f X (x)  dx  N i  W X  3.5  eV  cm -3 At N i  3  cm -3  W X max  115 eV. = The time interval for accelerating the Ar (+1) ions is   3-5  s. = These estimations correlate with the measured energy of the Ar ions and the typical acceleration time.

Comparison between HeII 4686 Å and HeII 3203 Å line profiles observed in the x- and z-direction HeII 4686 Å HeII 3203 Å x-directionz-direction  z = 2.4 Å  x = 6.0 Å  z = 1.6 Å  x = 4.6 Å He, 320 mTorr; h = 500 G/cm; B z =0; J z max = 70 kA; t  3  s

Тепловые и направленные скорости ионов HeII в токовых слоях, He, 320 mTorr; h = 0.5 kG/cm; B z =0; B z = 2.9 kG J z max = 70 kA N e 0  (0.9  1.3)  cm -3 N e x  3.4  cm -3 T i  50 eV W x  400 eV (B z = 0) развивающихся в 2D магнитном поле (B z = 0) или в 3D магнитной конфигурации (B z = 2.9 kG) Н.П. Кирий и др. Труды ФАС-XIX, С (2009) SLs: HeII nm; HeII nm

The Ampere force F x acting along the surface of a current sheet formed in the He plasma  = 1.2 cm I z (x) = – c /2   {B x J (x) – [  B y J (x)/  x]   };  j z (x) = I z (x) / 2  F x (x) = f x (x)  2  = -1/c  I z (x)  B y T (x); B y T = h  x + B y J   h = 0.5 kG/cm B Z 0 = 0 (2D) He, 320 mTorr J Z  70 kA; t  2.1  s F x max  3.5  10 5 dyn  cm -2 x  cm  

The y-dependence of the Ampere force f x (y) at x = -5 cm At the CS midplane (y = 0) there is a maximum in the current density j z (y), and a minimum in the value of the normal component  B y T (y) . The force f x (y) = -1/c  j z (x)  B y T (x) can have a local minimum near the midplane. We might expect effective plasma acceleration where plasma density is lower than at the CS midplane, i.e. at some distance along the y – axis. h = 0.63 kG/cm; Ar, 28 mTorr; J Z  70 kA; B Z 0 = 0

Ampere force f x (y) and plasma density N e (y) at x = -5 cm He, 320 mTorr h = 0.5 kG/ cm J z max = 70 kA The N e (y) distribution is very narrow as compared with the f x (y) distribution, so that the low-density plasma at wings of the N e (y) distribution can be effectively accelerated

Distributions of the current I z (x) at successive times. Development of reverse currents E z i  1/c  (v x  B y T ) h = 0.63 kG/cm Ar, 28 mTorr J Z  70 kA t = 2.3  s t = 3.5  s t = 4.5  s t = 5.0  s

Evolution of the currents I z (x) integrated over one-half the sheet (- R  x  0) J z (+) =  I z (+) (x)  dx - direct currents in the region (x R  x  0); J z (-) =  I z (-) (x)  dx - reverse currents in the region (-R  x  x R ); J z (S) =  I z (x)  dx - the total current in the whole region (-R  x  0). x R (t) – the x-coordinate where the current I z (x) reverses its direction: I z (x R ) = 0. t,  s The current I z (x) is concentrated in the region  y    = 0.8 cm h = 0.63 kG/cm Ar, 28 mTorr J Z  70 kA

Magnetic structure of current sheets, by S.I. Syrovatskii, JETP 1971 A current sheet with the reverse currents at the edges A current sheet without the reverse currents

Заключение = В экспериментах по изучению динамики токовых слоев и процессов магнитного пересоединения была исследована эволюция магнитных полей, что позволило определить основные особенности структуры электрических токов и электродинамических сил. = Измерены температуры ионов, электронов и энергии направленных движений плазмы. Обнаружены потоки плазмы, которые движутся вдоль поверхности токового слоя с энергиями, значительно превышающими тепловую энергию ионов. = Проведен анализ пространственной структуры сил [j  B] и показано, что под действием этих сил должно происходить постепенное увеличение кинетической энергии направленного движения ионов вдоль поверхности токового слоя. = В результате энергия ионов у боковых концов слоя может достигать 100 эВ, что согласуется с непосредственно измеренными энергиями потоков плазмы при формировании слоя в Ar. = Обнаружено, что у боковых краев слоя возникают токи обратного направления по отношению к основному току, протекающему в центральной области слоя. = = Генерация обратных токов и их усиление со временем свидетельствуют о новых динамических эффектах в токовых слоях, возникающих при движении потоков плазмы в сильном поперечном магнитном поле, что, в свою очередь, приводит к изменению магнитной структуры слоя.

Спасибо за внимание!

Coronal Mass Ejections (CME) X-ray images of the Sun recorded with the SPIRIT device mounted on the Coronas-F satellite.

Experimental device CS-3D Institute of General Physics, Moscow, Russia   100 cm  

Distributions over the current sheet thickness of the tangential magnetic field component B X (y), current density j Z (у) and excess guide field  B Z (у) Ar, 28 mTorr; h = 0.57 kG/cm; B Z 0 = 4.3 kG; J Z  70 kA = The excess guide field  B Z (у) is localized only in the regions where the basic current j Z flows. = The excess guide field  B Z is supported by additional plasma currents in the (x, y) plane. = The total current on one side of the current sheet, J X  57 kA, is of the same order as the total basic current along the X line, which gives rise to the current sheet formation, J Z  70 kA.

Plasma dynamics in 3D magnetic field with the X-line and the guide field B z Deterioration of the current and plasma compression due to amplification of the guide field in the sheet Compression of the current, plasma and the guide field B z into the sheet

h = 430 G/cm; Ar, 28 mTorr; J z max = 70 kA Voronov G.S. et al. Plasma Phys. Rep. 34, 999 (2008) Ar +1 and Ar +2 ions are depleted in the sheet midplane with increasing T e and N e T e was determined from time behaviour of various spectral lines by using the SIMPTOS code including the processes of ionization, excitation and plasma flows. Spatiotemporal evolution of plasma parameters under study:  Intensity of spectral line Ar II nm (Ar +1 ions)  Intensity of spectral line Ar III nm (Ar +2 ions)  Electron density N e and electron temperature T e