Trig Functions – Part 2 33 22 11 Tangent & Cotangent Identities Pythagorean Identities Practice Problems.

Slides:



Advertisements
Similar presentations
Inverse Trigonometric Functions
Advertisements

The Inverse Trigonometric Functions Section 4.2. Objectives Find the exact value of expressions involving the inverse sine, cosine, and tangent functions.
6.5 & 6.7 Notes Writing equations of trigonometric functions given the transformations.
Unit 5 – Graphs of the other Trigonometric Functions Tangent and Cotangent MM4A3. Students will investigate and use the graphs of the six trigonometric.
Section 5.3 Trigonometric Functions on the Unit Circle
Trigonometric Functions. Let point P with coordinates (x, y) be any point that lies on the terminal side of θ. θ is a position angle of point P Suppose.
Copyright © 2009 Pearson Addison-Wesley Trigonometric Functions.
Trigonometric Ratios Triangles in Quadrant I. a Trig Ratio is … … a ratio of the lengths of two sides of a right Δ.
7.5 The Other Trigonometric Functions. 7.5 T HE O THER T RIG F UNCTIONS Objectives:  Evaluate csc, sec and cot Vocabulary: Cosecant, Secant, Cotangent.
7.3 Trigonometric Functions of Angles. Angle in Standard Position Distance r from ( x, y ) to origin always (+) r ( x, y ) x y  y x.
Properties of the Trigonometric Functions. Domain and Range Remember: Remember:
Trigonometric Functions on Any Angle Section 4.4.
Inverse Hyperbolic Functions. The Inverse Hyperbolic Sine, Inverse Hyperbolic Cosine & Inverse Hyperbolic Tangent.
Graphs of the Other Trigonometric Functions Section 4.6.
Inverse Trigonometric Functions The definitions of the inverse functions for secant, cosecant, and cotangent will be similar to the development for the.
Section 5.3 Trigonometric Functions on the Unit Circle
7.5 The Other Trigonometric Functions. 7.5 T HE O THER T RIG F UNCTIONS Objectives:  Evaluate csc, sec and cot Vocabulary: Cosecant, Secant, Cotangent.
3.5 – Derivative of Trigonometric Functions
Lesson 13.1: Trigonometry.
Warm-up:. Homework: 7.5: graph secant, cosecant, tangent, and cotangent functions from equations (6-7) In this section we will answer… What about the.
Section 7.2 Trigonometric Functions of Acute Angles.
12-2 Trigonometric Functions of Acute Angles
ANALYTIC TRIGONOMETRY UNIT 7. VERIFYING IDENTITIES LESSON 7.1.
Trigonometric Ratios in the Unit Circle 6 December 2010.
5.3 Properties of the Trigonometric Function. (0, 1) (-1, 0) (0, -1) (1, 0) y x P = (a, b)
4.2 Trigonometric Functions (part 2) III. Trigonometric Functions. A) Basic trig functions: sine, cosine, tangent. B) Trig functions on the unit circle:
In this section, you will learn to:
Graphs of the Trig Functions Objective To use the graphs of the trigonometric functions.
Chapter 5 – Trigonometric Functions: Unit Circle Approach Trigonometric Function of Real Numbers.
4.4 Trigonmetric functions of Any Angle. Objective Evaluate trigonometric functions of any angle Use reference angles to evaluate trig functions.
Finding Trigonometric Function Values using a Calculator Objective: Evaluate trigonometric functions using a calculator.
Limits Involving Trigonometric Functions
Chapter 2 Trigonometric Functions of Real Numbers Section 2.2 Trigonometric Functions of Real Numbers.
Sullivan Precalculus: Section 5.5 Graphs of the Tangent, Cotangent, Secant, and Cosecant Functions Objectives of this Section Graph Transformations of.
Graphing Primary and Reciprocal Trig Functions MHF4UI Monday November 12 th, 2012.
or Keyword: Use Double Angle Formulas.
4.3 Right Triangle Trigonometry Trigonometric Identities.
Sullivan Precalculus: Section 5.3 Properties of the Trig Functions Objectives of this Section Determine the Domain and Range of the Trigonometric Functions.
Bellringer 3-28 What is the area of a circular sector with radius = 9 cm and a central angle of θ = 45°?
List all properties you remember about triangles, especially the trig ratios.
C H. 4 – T RIGONOMETRIC F UNCTIONS 4.2 – The Unit Circle.
Solving Trigonometric Equations Unit 5D Day 1. Do Now  Fill in the chart. This must go in your notes! θsinθcosθtanθ 0º 30º 45º 60º 90º.
The Unit Circle with Radian Measures. 4.2 Trigonometric Function: The Unit circle.
Copyright © 2017, 2013, 2009 Pearson Education, Inc.
Objective: Finding trigonometric functions of any angle. Warm up Make chart for special angles.
Section 6.2 The Unit Circle and Circular Functions
1 Trigonometric Functions Copyright © 2009 Pearson Addison-Wesley.
Trigonometric Functions: The Unit Circle
Trigonometric Functions: The Unit Circle Section 4.2
Trigonometric Functions: The Unit Circle 4.2
Properties: Trigonometric Identities
Evaluating Trigonometric Functions
5.2: Verifying Trigonometric Identities
Activity 4-2: Trig Ratios of Any Angles
Trigonometric Functions
Verifying Trigonometric Identities (Section 5-2)
Basic Identities Trigonometric Identities Section 3.1
5.2 Verifying Trigonometric Identities
MATH 1330 Section 5.3.
5.3 Properties of the Trigonometric Function
4.4 Trig Functions of any Angle
The Inverse Trigonometric Functions (Continued)
Introduction to College Algebra & Trigonometry
4.3 Right Triangle Trigonometry
SIX TRIGNOMETRIC RATIOS
Graphs of Tangent, Cotangent, Secant, and Cosecant
WArmup Rewrite 240° in radians..
1 Trigonometric Functions.
MATH 1330 Section 5.3.
9.5: Graphing Other Trigonometric Functions
Presentation transcript:

Trig Functions – Part Tangent & Cotangent Identities Pythagorean Identities Practice Problems

Tangent & Cotangent Identities 2

Pythagorean Identities 3

Signs of Trigonometric Functions 4

Quadrant Containing Q Positive FunctionsNegative Functions IAllNone IISine, CosecantCosine, Secant, Tangent, Cotangent IIITangent, CotangentSine, Cosecant, Cosine, Secant IVCosine, SecantSine, Cosecant, Tangent, Cotangent 5

Example 6

Another Example 7

Proof Example 8

Proof Example (Cont.) 9

Verifying an Identity Example Verify the following identity by transforming the left- hand side into the right-hand side. 10

Verifying an Identity Example (Cont.) 11

Practice Problems  Page 426 Problems odd 12