Improving Retrievals of Tropospheric NO 2 Randall Martin, Dalhousie and Harvard-Smithsonian Lok Lamsal, Gray O’Byrne, Aaron van Donkelaar, Dalhousie Ed.

Slides:



Advertisements
Similar presentations
Inferring SO 2 and NO x Emissions from Satellite Remote Sensing Randall Martin with contributions from Akhila Padmanabhan, Gray O’Byrne, Sajeev Philip.
Advertisements

Lok Lamsal, Randall Martin, Aaron van Donkelaar Folkert Boersma, Ruud Dirksen (KNMI) Edward Celarier, Eric Bucsela, James Gleason (NASA) E.S.
Simulation of Absorbing Aerosol Index & Understanding the Relation of NO 2 Column Retrievals with Ground-based Monitors Randall Martin (Dalhousie, Harvard-Smithsonian)
Global Climatology of Fine Particulate Matter Concentrations Estimated from Remote-Sensed Aerosol Optical Depth Aaron van Donkelaar 1, Randall Martin 1,2,
Satellite Remote Sensing of a Multipollutant Air Quality Health Index Randall Martin, Dalhousie and Harvard-Smithsonian Aaron van Donkelaar, Lok Lamsal,
Improvement and validation of OMI NO 2 observations over complex terrain A contribution to ACCENT-TROPOSAT-2, Task Group 3 Yipin Zhou, Dominik Brunner,
Integrating satellite observations for assessing air quality over North America with GEOS-Chem Mark Parrington, Dylan Jones University of Toronto
Retrieval of SO 2 Vertical Columns from SCIAMACHY and OMI: Air Mass Factor Algorithm Development Chulkyu Lee, Aaron van Dokelaar, Gray O’Byrne: Dalhousie.
Long-range transport of NO y and ozone from Asia Thomas Walker Dalhousie University 3 rd GEOS-Chem Users' Meeting April 13, 2007.
Satellite-based Global Estimate of Ground-level Fine Particulate Matter Concentrations Aaron van Donkelaar1, Randall Martin1,2, Lok Lamsal1, Chulkyu Lee1.
1 Surface nitrogen dioxide concentrations inferred from Ozone Monitoring Instrument (OMI) rd GEOS-Chem USERS ` MEETING, Harvard University.
1 Global Observations of Sulfur Dioxide from GOME Xiong Liu 1, Kelly Chance 1, Neil Moore 2, Randall V. Martin 1,2, and Dylan Jones 3 1 Harvard-Smithsonian.
Surface Reflectivity from OMI using MODIS to Eliminate Clouds: Effects of Snow on UV-Vis Trace Gas Retrievals Gray O’Byrne, 1 Randall V. Martin, 1,2 Aaron.
Satellite Remote Sensing of Global Air Pollution
Folkert Boersma, D. Jacob, R. Park, R. Hudman – Harvard University H. Eskes, P. Veefkind, R. van der A, P. Levelt, E. Brinksma – KNMI A. Perring, R. Cohen,
Indirect Validation of Tropospheric Nitrogen Dioxide Retrieved from the OMI Satellite Instrument: Insight into the Seasonal Variation of Nitrogen Oxides.
Insight from the A-Train into Global Air Quality Randall Martin, Dalhousie and Harvard-Smithsonian Aaron van Donkelaar, Lok Lamsal, Akhila Padmanabhan,
Surface Reflectivity from OMI: Effects of snow on OMI NO 2 retrievals Gray O’Byrne 1, Randall Martin 1,2, Joanna Joiner 3, Edward A. Celarier 3 1 Dalhousie.
Algorithms and chemical data assimilation activities at Environment Canada Chris McLinden Air Quality Research Division, Environment Canada 2 nd TEMPO.
Mapping isoprene emissions from space Dylan Millet with
1 NO x emissions from power plants in China: bottom-up estimates and satellite constraints Siwen Wang, 1,3 Qiang Zhang, 2 David G. Streets, 3 Kebin He,
Satellite Observations of Tropospheric Gases and Aerosols Randall Martin With contributions from: Rongming Hu (Dalhousie University) Chris Sioris, Xiong.
Tropospheric NO2 Ronald van der A, Michel Van Roozendael, Isabelle De Smedt, Ruud Dirksen, Folkert Boersma KNMI and BIRA-IASB Beijing, October 2008.
Randall Martin Space-based Constraints on Emissions of Nitrogen Oxides With contributions from: Chris Sioris, Kelly Chance (Smithsonian Astrophysical Observatory)
Surface Reflectivity from OMI: Effects of Snow on OMI NO 2 Gray O’Byrne 1, Randall Martin 1,2, Aaron van Donkelaar 1, Joanna Joiner 3, Edward A. Celarier.
Insight into Global Air Quality using Satellite Remote Sensing and Modeling Randall Martin with contributions from Aaron van Donkelaar, Shailesh Kharol,
Advances in Applying Satellite Remote Sensing to the AQHI Randall Martin, Dalhousie and Harvard-Smithsonian Aaron van Donkelaar, Akhila Padmanabhan, Dalhousie.
Satellite and Aircraft Based Constraints on NO X Emissions Randall Martin Chris Sioris Kelly Chance Tom Ryerson Andy Neuman Ron Cohen UC Berkeley Aaron.
Applications of Satellite Remote Sensing to Estimate Global Ambient Fine Particulate Matter Concentrations Randall Martin, Dalhousie and Harvard-Smithsonian.
1 Ground-level nitrogen dioxide concentrations inferred from the satellite-borne Ozone Monitoring Instrument Lok Lamsal and Randall Martin with contributions.
Using Satellite Remote Sensing to Estimate Global Outdoor Air Pollution Exposure Randall Martin, Dalhousie and Harvard-Smithsonian Aaron van Donkelaar,
Application of Satellite Observations for Timely Updates to Bottom-up Global Anthropogenic NO x Emission Inventories L.N. Lamsal 1, R.V. Martin 1,2, A.
VALIDATION OF OMI TROPOSPHERIC NO 2 DURING INTEX-B AND APPLICATION TO CONSTRAIN NO x EMISSIONS IN THE EASTERN UNITED STATES AND MEXICO K. F. Boersma, D.
Validation, Day of Week and Seasonal Perspectives on Satellite NO 2 Ronald C. Cohen UC Berkeley.
Long-range transport of NO y and O 3 Thomas Walker Dalhousie University Department of Physics & Atmospheric Science December 6, 2006.
1 Inferring Ground-level Nitrogen Dioxide Concentrations from OMI Martin Steinbacher, Empa Edward Celarier, SGT Inc. Eric Bucsela, NASA GSFC.
Space-based Constraints on Global SO 2 Emissions and Timely Updates for NO x Inventories Randall Martin, Dalhousie and Harvard-Smithsonian Chulkyu Lee,
Constraints on the Production of Nitric Oxide by Lightning as Inferred from Satellite Observations Randall Martin Dalhousie University With contributions.
Henk Eskes, OMI meeting June 2006 OMI Nitrogen Dioxide: The KNMI Near-Real Time Product Henk Eskes, Pepijn Veefkind, Folkert Boersma, Ronald van.
Retrieval of Vertical Columns of Sulfur Dioxide from SCIAMACHY and OMI: Air Mass Factor Algorithm Development, Validation, and Error Analysis Chulkyu Lee.
Satellite Remote Sensing of NO 2 as an Indicator of Aerosol Pollution: Opportunities from GEMS (and GOCI) Observations Randall Martin with contributions.
1 Examining Seasonal Variation of Space-based Tropospheric NO 2 Columns Lok Lamsal.
Two New Applications of Satellite Remote Sensing: Timely Updates to Emission Inventories and Constraints on Ozone Production Randall Martin, Dalhousie.
Some Applications of Satellite Remote Sensing for Air Quality: Implications for a Geostationary Constellation Randall Martin, Dalhousie and Harvard-Smithsonian.
Evaluation of model simulations with satellite observed NO 2 columns and surface observations & Some new results from OMI N. Blond, LISA/KNMI P. van Velthoven,
Lok Lamsal, Nickolay Krotkov, Sergey Marchenko, Edward Celarier, William Swartz, Wenhan Qin, Alexander Vasilkov, Eric Bucsela, Dave Haffner 19 th OMI Science.
1 Relationship between ground-level NO 2 concentrations and OMI tropospheric NO 2 columns Martin Steinbacher, Empa; Edward Celarier, SGT Inc.
Folkert Boersma, D.J. Jacob, R.J. Park, R.C. Hudman – Harvard University H.J. Eskes, J.P. Veefkind, R.J. van der A, P.F. Levelt, E.J. Brinksma – KNMI A.
Ground-level NO 2 Concentrations Inferred from OMI Lok Lamsal, Dalhousie University Randall Martin, Dalhousie and Harvard-Smithsonian Aaron van Donkelaar,
Folkert Boersma Collaborators: Daniel J. Jacob, Miri Trainic, Yinon Rudich, Ruud Dirksen, and Ronald van der A Comparison of NO 2 air pollution in Israeli.
USE OF GEOS-CHEM BY SMITHSONIAN ASTROPHYSICAL OBSERVATORY AND DALHOUSIE UNIVERSITY Randall Martin Mid-July SAO Halifax, Nova Scotia.
Observing Air Quality from Space Randall Martin, Aaron van Donkelaar, Lok Lamsal, Chulkyu Lee, Carolyn Verduzco Undergraduate Science Conference 25 September.
Satellite Remote Sensing of the Air Quality Health Index Randall Martin, Dalhousie and Harvard-Smithsonian Aaron van Donkelaar, Lok Lamsal, Dalhousie University.
Global Air Pollution Inferred from Satellite Remote Sensing Randall Martin, Dalhousie and Harvard-Smithsonian with contributions from Aaron van Donkelaar,
Challenge the future Corresponding author: Delft University of Technology Collocated OMI DOMINO and MODIS Aqua aerosol products.
N. Bousserez, R. V. Martin, L. N. Lamsal, J. Mao, R. Cohen, and B. R
Randall Martin Dalhousie University
Randall Martin, Dalhousie and Harvard-Smithsonian
Harvard-Smithsonian Center for Astrophysics
Estimating Ground-level NO2 Concentrations from OMI Observations
Satellite Remote Sensing of Ozone-NOx-VOC Sensitivity
Retrieval of SO2 Vertical Columns from SCIAMACHY and OMI: Air Mass Factor Algorithm Development and Validation Chulkyu Lee, Aaron van Dokelaar, Gray O’Byrne:
Satellite Remote Sensing of Ground-Level NO2 for New Brunswick
Development of Methods for Retrieval and Interpretation of TEMPO NO2 Columns for Top-down Constraints on NOx Emissions & NOy Deposition Randall Martin.
Kelly Chance Smithsonian Astrophysical Observatory
Retrieval of SO2 Vertical Columns from SCIAMACHY and OMI: Air Mass Factor Algorithm Development and Validation Chulkyu Lee, Aaron van Dokelaar, Gray O’Byrne:
Global Climatology of Aerosol Optical Depth
Using satellite observations of tropospheric NO2 columns to infer trends in US NOx emissions: the importance of accounting for the NO2 background Rachel.
Randall Martin Mid-July
Presentation transcript:

Improving Retrievals of Tropospheric NO 2 Randall Martin, Dalhousie and Harvard-Smithsonian Lok Lamsal, Gray O’Byrne, Aaron van Donkelaar, Dalhousie Ed Celarier, Eric Bucsela, Joanna Joiner, NASA Folkert Boersma, Ruud Dirksen, KNMI Chao Luo, Yuhang Wang, Georgia Tech September 14, 2009 Air Quality Working Group Aura Meeting Leiden, Netherlands

Seasonal Differences Between OMI NO 2 Products Direct Validation Has Not Arbitrated Tropospheric NO 2 Column (10 15 molecules cm -2 ) Standard (SP)DOMINO (DP)DP-SP DJF 2005 JJA Δ (10 15 molecules cm -2 ) Lamsal et al., JGR, submitted

Indirect Validation of OMI (A)In-situ surface NO 2 measurements from the SEARCH (photolytic) and EPA/AQS (molybdenum) networks at rural sites in Eastern US Use GEOS-Chem NO 2 profiles to estimate surface-level NO 2 from OMI (Lamsal et al., JGR, 2008) Apply GEOS-Chem to infer top-down emissions from OMI by mass balance (Martin et al., JGR, 2003) (B) Updated bottom-up emission inventories for

Multiple Approaches Yield Similar Results NO x Emissions, SEARCH domain NOx Emissions, US + Canada SEARCH “True” NO 2 ”, Southeast U.S. AQS/EPA “Corrected” NO 2, Eastern U.S. Lamsal et al., JGR, submitted

Stratosphere-troposphere Separation and AMF Together Explain Difference Between DP and SP Air mass factor Strat-trop separation Combined Δ Tropospheric NO 2 Column DP – SP (10 15 molecules cm -2 ) Lamsal et al., JGR, submitted

Produce DP_GC From DP Averaging Kernels and GEOS-Chem NO 2 Profiles NO x Emissions, SEARCH domain NOx Emissions, US + Canada SEARCH “True” NO 2 ”, Southeast U.S. AQS/EPA “Corrected” NO 2, Eastern U.S. Lamsal et al., JGR, submitted

Surface Reflectivity Lambertian Equivalent Reflectivity (LER)

OMI LER (Kleipool et al. 2008) Best Represents Surface LER Use MODIS/Aqua to Eliminate Cloud and Aerosol from OMI Scenes Use NISE Snow Flag to Eliminate Snow Cloud-, Snow-, and Aerosol- Free LER ( ) Global Annual Mean Difference x100 (unitless) Standard Deviation x100 (unitless) TOMS MinLER GOME MinLER OMI MinLER OMI LER (if snow-free) LER Difference of 2%  15-30% Bias in NO 2 (Martin et al., 2002; Boersma et al., 2004) O’Byrne et al., JGR, submitted

Unrealistic Relation in OMI NO 2 versus Cloud & Snow (In situ NO 2 data show variation < 15%) OMI Reported Cloud Fraction ≥ 5cm of snow 0 > snow < 5cm no snow Winter Mean Trop. NO 2 (molec/cm 2 ) Winter OMI NO 2 over Calgary & Edmonton O’Byrne et al., JGR, submitted

Snow-covered Surface LER (unitless) Large Spatial Variation in Snow-Covered Surface LER Current Algorithms Assume Snow Reflectivity = 0.6 Snow Weakly Represented in Previous Climatologies Leads to Ambiguity in Accounting for Snow O’Byrne et al., JGR, submitted Snow-Covered LER Difference (Previous Climatology – Snow-Covered Surface LER) OMI LER

Spatially-Varying Biases in OMI NO 2 over Snow With Cloud Fraction Threshold (f < 0.3) To correct NO 2 retrieval for snow Use snow-covered surface reflectivity Use MODIS-determined cloud-free scenes to correct clouds NO 2 bias for MODIS-determined cloud-free scenes Positive (negative) bias from underestimated (overestimated) surface LER OMI reports clouds when surface LER is underestimated O’Byrne et al., JGR, submitted With All Cloud Fractions

Recommendations Remote Sensing Community: Use two reflectivity databases: one snow-free, one for snow Switch from TOMS or GOME reflectivity databases to OMI Switch from annual mean to monthly mean NO 2 profiles for SP Evaluate Stratosphere-Troposphere Separation Develop instrumentation with finer spatial resolution (more cloud-free scenes reduces dependence on assumed profile ) Following DP, include Averaging Kernels (or Scattering Weights) in trace gas products so the user can remove the effect of the assumed profile Modeling Community: Continue develop representation of vertical profile Ground-based Measurement Needs: span satellite footprint full year research quality (e.g. NO 2 ) vertical profile