Aplikasi Sebaran Normal Pertemuan 12 Matakuliah: L0104 / Statistika Psikologi Tahun : 2008.

Slides:



Advertisements
Similar presentations
Note 8 of 5E Statistics with Economics and Business Applications Chapter 6 Sampling Distributions Random Sample, Central Limit Theorem.
Advertisements

Pendugaan Parameter Nilai Tengah Pertemuan 13 Matakuliah: L0104 / Statistika Psikologi Tahun : 2008.
Analisis Varians/Ragam Klasifikasi Dua Arah Pertemuan 18 Matakuliah: L0104 / Statistika Psikologi Tahun : 2008.
Copyright ©2005 Brooks/Cole A division of Thomson Learning, Inc. Introduction to Probability and Statistics Twelfth Edition Robert J. Beaver Barbara M.
Regresi dan Korelasi Linear Pertemuan 19
Peubah Acak Kontinu Pertemuan 09 Matakuliah: L0104 / Statistika Psikologi Tahun : 2008.
1 Pertemuan 04 Ukuran Pemusatan dan Penyebaran Matakuliah: I0134 – Metoda Statistika Tahun: 2005 Versi: Revisi.
Uji Tanda dan Peringkat Bertanda Wilcoxon Pertemuan 25 Matakuliah: Statistika Psikologi Tahun: 2008.
Uji Kebaikan Suai (Uji Kecocokan) Pertemuan 23
Copyright ©2006 Brooks/Cole A division of Thomson Learning, Inc. Introduction to Probability and Statistics Twelfth Edition Robert J. Beaver Barbara M.
1 Pertemuan 07 Variabel Acak Diskrit dan Kontinu Matakuliah: I Statistika Tahun: 2008 Versi: Revisi.
Note 7 of 5E Statistics with Economics and Business Applications Chapter 5 The Normal and Other Continuous Probability Distributions Normal Probability.
Sampling Distributions
Chapter 7 Introduction to Sampling Distributions
1 Pertemuan 15 Pendugaan Parameter Nilai Tengah Matakuliah: I0134 – Metode Statistika Tahun: 2007.
1 Pertemuan 07 Pendugaan Parameter Matakuliah: I0262 – Statistik Probabilitas Tahun: 2007 Versi: Revisi.
Business Statistics: A Decision-Making Approach, 6e © 2005 Prentice-Hall, Inc. Chap 6-1 Introduction to Statistics Chapter 7 Sampling Distributions.
1 Pertemuan 09 Peubah Acak Kontinu Matakuliah: I0134 – Metode Statistika Tahun: 2007.
1 Pertemuan 03 Ukuran Pemusatan dan Lokasi Matakuliah: I0134 -Metode Statistika Tahun: 2007.
1 Pertemuan 07 Peubah Acak Diskrit Matakuliah: I0134 -Metode Statistika Tahun: 2007.
1 Pertemuan 06 Sebaran Normal dan Sampling Matakuliah: >K0614/ >FISIKA Tahun: >2006.
1 Pertemuan 06 Sebaran Penarikan Contoh Matakuliah: I0272 – Statistik Probabilitas Tahun: 2005 Versi: Revisi.
1 Pertemuan 04 Ukuran Simpangan dan Variabilitas Matakuliah: I0134 – Metode Statistika Tahun: 2007.
1 Pertemuan 13 Analisis Ragam (Varians) - 2 Matakuliah: I0272 – Statistik Probabilitas Tahun: 2005 Versi: Revisi.
1 Pertemuan 10 Analisis Ragam (Varians) - 1 Matakuliah: I0262 – Statistik Probabilitas Tahun: 2007 Versi: Revisi.
Introduction to Probability and Statistics Chapter 7 Sampling Distributions.
1 Pertemuan 05 Peubah Acak Kontinu dan Fungsi Kepekatannya Matakuliah: I0262 – Statistik Probabilitas Tahun: 2007 Versi: Revisi.
1 Pertemuan 11 Sampling dan Sebaran Sampling-1 Matakuliah: A0064 / Statistik Ekonomi Tahun: 2005 Versi: 1/1.
Normal and Sampling Distributions A normal distribution is uniquely determined by its mean, , and variance,  2 The random variable Z = (X-  /  is.
Continuous Probability Distribution  A continuous random variables (RV) has infinitely many possible outcomes  Probability is conveyed for a range of.
Introduction Parameters are numerical descriptive measures for populations. For the normal distribution, the location and shape are described by  and.
Normal Approximation Of The Binomial Distribution:
Copyright ©2011 Nelson Education Limited The Normal Probability Distribution CHAPTER 6.
Chap 6-1 A Course In Business Statistics, 4th © 2006 Prentice-Hall, Inc. A Course In Business Statistics 4 th Edition Chapter 6 Introduction to Sampling.
MTH3003 PJJ SEM I 2015/2016.  ASSIGNMENT :25% Assignment 1 (10%) Assignment 2 (15%)  Mid exam :30% Part A (Objective) Part B (Subjective)  Final Exam:
Introduction to Probability and Statistics Thirteenth Edition
1 Pertemuan 16 Pendugaan Parameter Matakuliah: I0134 – Metoda Statistika Tahun: 2005 Versi: Revisi.
Introduction to Probability and Statistics Thirteenth Edition Chapter 7 Sampling Distributions.
Chapter 7 Sampling Distributions
MATB344 Applied Statistics Chapter 7 Sampling Distributions I.Sampling Plans and Experimental Designs II.Statistics and Sampling Distributions III.“The.
McGraw-Hill/IrwinCopyright © 2009 by The McGraw-Hill Companies, Inc. All Rights Reserved. Chapter 7 Sampling Distributions.
Chapter 7 Sampling and Sampling Distributions ©. Simple Random Sample simple random sample Suppose that we want to select a sample of n objects from a.
1 Chapter 7 Sampling Distributions. 2 Chapter Outline  Selecting A Sample  Point Estimation  Introduction to Sampling Distributions  Sampling Distribution.
BUS216 Spring  Simple Random Sample  Systematic Random Sampling  Stratified Random Sampling  Cluster Sampling.
Continuous Random Variables Continuous random variables can assume the infinitely many values corresponding to real numbers. Examples: lengths, masses.
MATB344 Applied Statistics Chapter 6 The Normal Probability Distribution.
Introduction to Probability and Statistics Thirteenth Edition Chapter 6 The Normal Probability Distribution.
Chapter 9 Sampling Distributions Sir Naseer Shahzada.
1 Pertemuan 14 Peubah Acak Normal Matakuliah: I0134-Metode Statistika Tahun: 2007.
1 Pertemuan 10 Sebaran Binomial dan Poisson Matakuliah: I0134 – Metoda Statistika Tahun: 2005 Versi: Revisi.
Sebaran sampling Pertemuan 5 Matakuliah: D Statistika dan Aplikasinya Tahun: 2010.
1 Pertemuan 24 Uji Kebaikan Suai Matakuliah: I0134 – Metoda Statistika Tahun: 2005 Versi: Revisi.
Distribusi Peubah Acak Khusus Pertemuan 08 Matakuliah: L0104 / Statistika Psikologi Tahun : 2008.
Sebaran Normal dan Normal Baku Pertemuan 11 Matakuliah: L0104 / Statistika Psikologi Tahun : 2008.
1 Pertemuan 19 Analisis Varians Klasifikasi Satu Arah Matakuliah: I Statistika Tahun: 2008 Versi: Revisi.
Rancangan Acak Lengkap ( Analisis Varians Klasifikasi Satu Arah) Pertemuan 16 Matakuliah: I0184 – Teori Statistika II Tahun: 2009.
MATB344 Applied Statistics
SEBARAN NORMAL Pertemuan 6
Peubah Acak Diskrit Pertemuan 07
Pertemuan 11 Sebaran Peluang Hipergeometrik dan Geometrik
Pengujian Parameter Regresi dan Korelasi Pertemuan 20
Pertemuan 17 Pengujian Hipotesis
Pertemuan 13 Pendugaan Parameter Nilai Tengah
Pertemuan 13 Sebaran Seragam dan Eksponensial
Chapter 7 ENGR 201: Statistics for Engineers
ENGR 201: Statistics for Engineers
Continuous Random Variable Normal Distribution
Kejadian Bebas dan Bersyarat Pertemuan 06
Sebaran Normal dan Normal Baku Pertemuan 4
Lecture 12: Normal Distribution
Presentation transcript:

Aplikasi Sebaran Normal Pertemuan 12 Matakuliah: L0104 / Statistika Psikologi Tahun : 2008

Bina Nusantara Learning Outcomes 3 Pada akhir pertemuan ini, diharapkan mahasiswa akan mampu : Mahasiswa akan dapat menghitung peluang Binomial dengan pendekatan pada sebaran normal baku.

Bina Nusantara Outline Materi 4 Metode deskriptif untuk sebaran normal pendekatan sebaran Binomial pada sebaran normal baku Koreksi kekontinuan

Bina Nusantara The Normal Approximation to the Binomial We can calculate binomial probabilities using –The binomial formula –The cumulative binomial tables –Do It Yourself! applets When n is large, and p is not too close to zero or one, areas under the normal curve with mean np and variance npq can be used to approximate binomial probabilities.

Bina Nusantara Approximating the Binomial continuity correction. Make sure to include the entire rectangle for the values of x in the interval of interest. This is called the continuity correction. Standardize the values of x using Make sure that np and nq are both greater than 5 to avoid inaccurate approximations!

Bina Nusantara Example Suppose x is a binomial random variable with n = 30 and p =.4. Using the normal approximation to find P(x  10). n = 30 p =.4 q =.6 np = 12nq = 18 The normal approximation is ok!

Bina Nusantara Example Applet

Bina Nusantara Example A production line produces AA batteries with a reliability rate of 95%. A sample of n = 200 batteries is selected. Find the probability that at least 195 of the batteries work. Success = working battery n = 200 p =.95 np = 190nq = 10 The normal approximation is ok!

Bina Nusantara Central Limit Theorem: If random samples of n observations are drawn from a nonnormal population with finite  and standard deviation , then, when n is large, the sampling distribution of the sample mean is approximately normally distributed, with mean  and standard deviation. The approximation becomes more accurate as n becomes large. Central Limit Theorem: If random samples of n observations are drawn from a nonnormal population with finite  and standard deviation , then, when n is large, the sampling distribution of the sample mean is approximately normally distributed, with mean  and standard deviation. The approximation becomes more accurate as n becomes large. Sampling Distributions Sampling distributions for statistics can be Approximated with simulation techniques Derived using mathematical theorems The Central Limit Theorem is one such theorem.

Bina Nusantara Example uniform. Toss a fair coin n = 1 time. The distribution of x the number on the upper face is flat or uniform. Applet

Bina Nusantara Example mound- shaped. Toss a fair coin n = 2 time. The distribution of x the average number on the two upper faces is mound- shaped. Applet

Bina Nusantara Example approximately normal. Toss a fair coin n = 3 time. The distribution of x the average number on the two upper faces is approximately normal. Applet

Bina Nusantara Why is this Important? Central Limit Theorem The Central Limit Theorem also implies that the sum of n measurements is approximately normal with mean n  and standard deviation. Many statistics that are used for statistical inference are sums or averages of sample measurements. normal When n is large, these statistics will have approximately normal distributions. reliability This will allow us to describe their behavior and evaluate the reliability of our inferences.

Bina Nusantara How Large is Large? normal If the sample is normal, then the sampling distribution of will also be normal, no matter what the sample size. symmetric When the sample population is approximately symmetric, the distribution becomes approximately normal for relatively small values of n. (ex. n=3 in dice example) skewed at least 30 When the sample population is skewed, the sample size must be at least 30 before the sampling distribution of becomes approximately normal.

Bina Nusantara The Sampling Distribution of the Sample Proportion Central Limit Theorem The Central Limit Theorem can be used to conclude that the binomial random variable x is approximately normal when n is large, with mean np and standard deviation. The sample proportion, is simply a rescaling of the binomial random variable x, dividing it by n. approximately normal, From the Central Limit Theorem, the sampling distribution of will also be approximately normal, with a rescaled mean and standard deviation.

Bina Nusantara The Sampling Distribution of the Sample Proportion The standard deviation of p-hat is sometimes called the STANDARD ERROR (SE) of p-hat. A random sample of size n is selected from a binomial population with parameter p   he sampling distribution of the sample proportion, will have mean p and standard deviation approximately normal. If n is large, and p is not too close to zero or one, the sampling distribution of will be approximately normal.

Bina Nusantara Finding Probabilities for the Sample Proportion If the sampling distribution of is normal or approximately normal  standardize or rescale the interval of interest in terms of Find the appropriate area using Table 3. If the sampling distribution of is normal or approximately normal  standardize or rescale the interval of interest in terms of Find the appropriate area using Table 3. Example: Example: A random sample of size n = 100 from a binomial population with p =.4.

Bina Nusantara Example The soda bottler in the previous example claims that only 5% of the soda cans are underfilled. A quality control technician randomly samples 200 cans of soda. What is the probability that more than 10% of the cans are underfilled? This would be very unusual, if indeed p =.05! n = 200 S: underfilled can p = P(S) =.05 q =.95 np = 10 nq = 190 n = 200 S: underfilled can p = P(S) =.05 q =.95 np = 10 nq = 190 OK to use the normal approximation

Bina Nusantara Selamat Belajar Semoga Sukses