Antineutrino Physics in KamLAND Atsuto Suzuki High Energy Accelerator Research Organization (KEK) 1. KamLAND Experiment 2. Reactor Antineutrino Oscillation.

Slides:



Advertisements
Similar presentations
Neutrinos Louvain, February 2005 Alan Martin Arguably the most fascinating of the elementary particles. Certainly they take us beyond the Standard Model.
Advertisements

6/6/2003Jonathan Link, Columbia U. NuFact03 Future Measurement of sin 2 2  13 at Nuclear Reactors Jonathan Link Columbia University June 6, 2003 ′03.
Neutrino emission =0.27 MeV E=0.39,0.86 MeV =6.74 MeV ppI loss: ~2% ppII loss: 4% note: /Q= 0.27/26.73 = 1% ppIII loss: 28% Total loss: 2.3%
Observation of the geo-ν's and reactor anti-ν's in Borexino Yury Suvorov INFN (LNGS) / RRC Kurchatov Inst. APC 28th April 2010, Paris (on behalf of the.
Super-Kamiokande Introduction Contained events and upward muons Updated results Oscillation analysis with a 3D flux Multi-ring events  0 /  ratio 3 decay.
suekane 05 Erice School1 KamLAND F.Suekane Research Center for Neutrino Science Tohoku University Erice School
Experimental Status of Geo-reactor Search with KamLAND Detector
Lauren Hsu Lawrence Berkeley National Laboratory
Prospects for 7 Be Solar Neutrino Detection with KamLAND Stanford University Department of Physics Kazumi Ishii.
Neutrino Physics - Lecture 6 Steve Elliott LANL Staff Member UNM Adjunct Professor ,
Experimental Status of Geo-reactor Search with KamLAND Detector
Reactor & Accelerator Thanks to Bob McKeown for many of the slides.
Results and Future of the KamLAND Experiment
Results and plans of the KamLAND experiment
Geoneutrino Overview 1.Review of Geoneutrino Physics (with KamLAND)
Exploring the Geo-reactor Hypothesis with Neutrinos Jelena Maričić KamLAND Collaboration March 24 th 2007 DOANOW Workshop University of Hawai’i.
Experimental Investigation of Geologically Produced Antineutrinos with KamLAND Stanford University Department of Physics Kazumi Ishii.
Neutrino emission =0.27 MeV E=0.39,0.86 MeV =6.74 MeV ppI loss: ~2% ppII loss: 4% note: /Q= 0.27/26.73 = 1% ppIII loss: 28% Total loss: 2.3%
Neutron background and possibility for shallow experiments Tadao Mitsui Research Center for Neutrino Science, Tohoku University December, 2005 Neutrino.
Measuring  13 with Reactors Stuart Freedman University of California at Berkeley SLAC Seminar September 29, 2003.
New results from K2K Makoto Yoshida (IPNS, KEK) for the K2K collaboration NuFACT02, July 4, 2002 London, UK.
Low-energy neutrino physics with KamLAND Tadao Mitsui (Research Center for Neutrino Science, Tohoku U.) for the KamLAND collaboration Now2010, Grand Hotel.
1 The Daya Bay Reactor Electron Anti-neutrino Oscillation Experiment Jianglai Liu (for the Daya Bay Collaboration) California Institute of Technology APS.
KamLAND and Geoneutrinos Sanshiro Enomoto KamLAND Collaboration RCNS, Tohoku University 1. Review of Previous Results 2. Recent Improvements (Preliminary)
KamLAND Experiment Kamioka Liquid scintillator Anti-Neutrino Detector - Largest low-energy anti-neutrino detector built so far - Located at the site of.
9/14/06- S. DyeNOW A Deep Ocean Anti-Neutrino Observatory An Introduction to the Science Potential of Hanohano Presented by Steve Dye University.
Geo Neutrino Detection at KamLAND F.Suekane RC S Tohoku University 5th Workshop on Applied Antineutrino Physics (AAP2009) Angra dos Reis, Brazil 20/03/2009.
KamLAND Results Junpei Shirai for the KamLAND Collaboration Tohoku University NOW2006, Conca Specchiulla, Italy Sep.10-15, 2006 SUN… Earth Reactor KamLAND.
Solar neutrino measurement at Super Kamiokande ICHEP'04 ICRR K.Ishihara for SK collaboration Super Kamiokande detector Result from SK-I Status of SK-II.
Caren Hagner CSTS Saclay Present And Near Future of θ 13 & CPV in Neutrino Experiments Caren Hagner Universität Hamburg Neutrino Mixing and.
Lino MiramontiJune 9-14, 2003, Nara Japan 1st Yamada Symposium Neutrinos and Dark Matter in Nuclear Physics.
Recent results from the K2K experiment Yoshinari Hayato (KEK/IPNS) for the K2K collaboration Introduction Summary of the results in 2001 Overview of the.
The Earth Matter Effect in the T2KK Experiment Ken-ichi Senda Grad. Univ. for Adv. Studies.
KamLAND : Studying Neutrinos from Reactor Atsuto Suzuki KamLAND Collaboration KEK : High Energy Accelerator Research Organization.
Using Reactor Anti-Neutrinos to Measure sin 2 2θ 13 Jonathan Link Columbia University Fermilab Long Range Planning Committee, Neutrino Session November.
RENO and the Last Result
1 A roadmap for geo-neutrinos: theory and experiment Ferrara University & INFN Gianni Fiorentini arXiv:
Atsuto Suzuki 年 1953 年 a F. Reines G. Gamow.
Yasuhiro Kishimoto for KamLAND collaboration RCNS, Tohoku Univ. September 12, 2007 TAUP 2007 in Sendai.
νeνe νeνe νeνe νeνe νeνe νeνe Distance (L/E) Probability ν e 1.0 ~1800 meters 3 MeV) Reactor Oscillation Experiment Basics Unoscillated flux observed.
KamLAND, a culmination of half century of reactor neutrino studies. Petr Vogel, Caltech.
Present and future detectors for Geo-neutrinos: Borexino and LENA Applied Antineutrino Physics Workshop APC, Paris, Dec L. Oberauer, TU München.
Kr2Det: TWO - DETECTOR REACTOR NEUTRINO OSCILLATION EXPERIMENT AT KRASNOYARSK UNDERGROUND SITE L. Mikaelyan for KURCHATOV INSTITUTE NEUTRINO GROUP.
L. Oberauer, Paris, June 2004   Measurements at Reactors Neutrino 2004 CdF, Paris, June chasing the missing mixing angle.
Geo-neutrino: Experiments Jelena Maricic Drexel University Neutrino Champagne – LowNu2009 October 20, 2009 BNO.
Results for the Neutrino Mixing Angle  13 from RENO International School of Nuclear Physics, 35 th Course Neutrino Physics: Present and Future, Erice/Sicily,
Past Reactor Experiments (Some Lessons From History)
Neutrinos from the sun, earth and SN’s: a brief excursion Aldo IFAE 2006 Pavia April 19 th.
Results from RENO Soo-Bong Kim (KNRC, Seoul National University) “17 th Lomosonov Conference on Elementary Particle Physics” Moscow. Russia, Aug ,
Search for Sterile Neutrino Oscillations with MiniBooNE
Karsten Heeger Beijing, January 18, 2003 Design Considerations for a  13 Reactor Neutrino Experiment with Multiple Detectors Karsten M. Heeger Lawrence.
Double Chooz Near Detector Guillaume MENTION CEA Saclay, DAPNIA/SPP Workshop AAP 2007 Friday, December 14 th, 2007
Karsten Heeger, LBNL INPAC, October 3, 2003 Reactor Neutrino Oscillation Experiments Karsten M. Heeger Lawrence Berkeley National Laboratory.
Daya Bay Reactor Neutrino Experiment On behalf of the DayaBay collaboration Virginia Polytechnic Institute and State University Joseph ykHor YuenKeung,
Measuring  13 with Reactors Stuart Freedman HEPAP July 24, 2003 Bethesda Reactor Detector 1Detector 2 d2d2 d1d1.
Neutrino Oscillations at Super-Kamiokande Soo-Bong Kim (Seoul National University)
Medium baseline neutrino oscillation searches Andrew Bazarko, Princeton University Les Houches, 20 June 2001 LSND: MeVdecay at rest MeVdecay in flight.
  Measurement with Double Chooz IDM chasing the missing mixing angle e  x.
Recent Results from RENO NUFACT2014 August. 25 to 30, 2014, Glasgow, Scotland, U.K. Hyunkwan Seo on behalf of the RENO Collaboration Seoul National University.
Supernova Relic Neutrinos (SRN) are a diffuse neutrino signal from all past supernovae that has never been detected. Motivation SRN measurement enables.
Results from Borexino Davide Franco CNRS-APC NOW 2012 September 9-16, 2012.
5th June 2003, NuFact03 Kengo Nakamura1 Solar neutrino results, KamLAND & prospects Solar Neutrino History Solar.
Double Chooz Experiment Status Jelena Maricic, Drexel University (for the Double Chooz Collaboration) September, 27 th, SNAC11.
Geoneutrinos Next step of geoneutrino research Leonid Bezrukov Valery Sinev INR, Moscow 2014.
Solar and geo neutrinos  in Borexino: summary of the PHASE 1 measurements and (two) new results Gemma Testera - INFN Genova (on behalf of the Borexino.
Neutron backgrounds in KamLAND
Current Results from Reactor Neutrino Experiments
KamLAND Update NuFact 05 Lauren Hsu June 21, 2005
Davide Franco for the Borexino Collaboration Milano University & INFN
Presentation transcript:

Antineutrino Physics in KamLAND Atsuto Suzuki High Energy Accelerator Research Organization (KEK) 1. KamLAND Experiment 2. Reactor Antineutrino Oscillation Study 3. Geological Antineutrino Detection 4. Conclusions 1. KamLAND Experiment 2. Reactor Antineutrino Oscillation Study 3. Geological Antineutrino Detection 4. Conclusions JINR Scientific Council, January 19, 2007

KamLAND: 3 rd Generation Experiment at Kamioka 3 rd generation KamLAND: 1000 ton Liquid Scintillator Detector 2 nd generation Super-Kamiokande: 50,000 ton Water Cerenkov Detector (1996 ~ ) 1994: proposal 1997: Budget was approved. Construction started. Construction started. 1999: Japan-US collaboration 2002: Data-taking started. History 1 st generation Kamiokande: 3000 ton Water Cerenkov Detector ( )

13 m 18 m detector location: old Kamiokande site : 2700 m.w.e. water Cerenkov outer detector 1000 ton liquid scintillator : 80% (dodecane) + 20% (pseudocumene) g/l PPO : housed in spherical plastic balloon 1325x17-inch + 554x20-inch PMT’s photocathode coverage : 34% energy resolution : 6.2 %/ ( E:MeV) 1/ m 3 stainless steel vessel KamLAND Detector : filled with a mixture of paraffin oil and dodecane (  = 0.04%)

inner view of spherical vessel

180 km KamLAND Experiment Kamioka Liquid scintillator AntiNeutrino Detector 1000 ton liquid scintillator detector 7 Be, CNO+pep

KamLAND Data Samples for Outcomes Mar. 9, 2002 – Oct. 30, 2004 (live time = days) Mar. 4 – Oct. 6, 2002 (live time = days) Mar. 9, 2002 – Jan. 11, 2004 (live time = days) physics run calibration run test/bad run 1 st reactor result : Evidence for Reactor Antineutrino Disappearance 2 nd reactor result : Evidence of Spectral Distortion 1 st geoneutrino result : Experimental Investigation of Geologically Produced Antineutrinos

Nuclear Power-Stations around Kamioka Kamiok a Kashiwazaki : world biggest power station (24.3 GW) 70 GW (~7 % of world total power generation) at L ~ (175 ± 35) km 70 GW (~7 % of world total power generation) at L ~ (175 ± 35) km huge power nearly equal distance long baseline (180 km) ⇩ Kamioka : suitable location for neutrino oscillation study huge power nearly equal distance long baseline (180 km) ⇩ Kamioka : suitable location for neutrino oscillation study commercial reactors : 53 nominal power output : 152 GW in Japan

distance from Kamioka (km) no. of neutrinos  86%:(175 ± 35)km  97%: Japanese stations  2.2 %: Korean 〃 〃  0.2 %: European 〃 〃  0.12 %: Taiwanese 〃 〃  0.12 %: North American 〃 ReactorContribution at Kamioka Reactor e Contribution at Kamioka

e ~210  s How to Detect e in Liquid Scintillator inverse  – decay : p  (2.2 MeV) n e+e+ d delayed coincidence method : prompt e + + delayed  (2.2 MeV) e + p  e + + n e + p  e + + n E ~ E e MeV E th = 1.8 MeV high rejection-power for background events prompt signal delayed signal

2.6 MeV <E prompt < 8.5 MeV 1.8 MeV <E delayed < 2.6 MeV Expect 1.5 n- 12 C captures Accidentalbackground geoneutrino region 2.6 MeV Prompt vs. Delayed Energy for e Candidate Events

expected ( no oscillation) observed Evidence for Reactor e Disappearance exposure tonyr observed ev. 258 expected ev. 365 ± 24 background ev ± 7.3 (N obs – N BG )/N expected = ± (stat) ± (syst) disappearance with % CL Time Dependence of Event Rate

Evidence of Reactor e Spectral Distortion Null Shape-Distortion excluded at 99.8 % CL 2-Flavor Oscillation Fit best fit with rate + spectrum shape  m 2 (eV 2 ) = 7.9 x sin 2 2  = 0.98 un-binned likelihood fit :    d.o.f. = 24.2/17 best fit with rate + spectrum shape  m 2 (eV 2 ) = 7.9 x sin 2 2  = 0.98 un-binned likelihood fit :    d.o.f. = 24.2/

allowed LMA-II LMA-I LMA-0 allowed  m 2 = 8.0 x eV 2, sin 2 2  = 0.98 Constraints on Oscillation Parameters disfavored at 97.5% C.L. disfavored at 98.0% C.L. event rate spectral shape + e  x e  xexcluded LMA

Observation of Neutrino Oscillation Pattern (L 0 ≡180 km) evidence of neutrino oscillation at 99. 8 % C.L. !!! evidence of neutrino oscillation at 99. 8 % C.L. !!! N obs / N exp definite baseline (~ 180 km) ⇒ test oscillation hypothesis Δm 2 =7.9x10 -5 eV 2 sin 2 2θ=0.98 L/E (km/MeV)

2-Flavor Oscillations (All Solar + KamLAND) 2-Flavor Oscillations (All Solar + KamLAND) assuming CPT invariance the most precise determination of  m 2 to date the most precise determination of  m 2 to date  m 2 = 7.9 x eV 2 tan 2  = 0.40  m 2 = 7.9 x eV 2 tan 2  = – – 0.07

A. Smirnov, 2002 Solutions to Solar Neutrino Problem KamLAND solved the solar neutrino problem under the laboratory conditions (J. Bahcall) KamLAND solved the solar neutrino problem under the laboratory conditions (J. Bahcall)

U, Th, K decays: radiogenic heat U, Th, K decays: radiogenic heat Experimental Investigation of Geologically Produced Antineutrinos Experimental Investigation of Geologically Produced Antineutrinos e e Heat Generation : basic factor Heat Generation : basic factor Interior Dynamics Formation History geoneutrino detection

Heat Balance between Dissipation and Generation heat dissipation 44 TW or 31 TW mW m-2cooling ~20 TW ??? ~20 TW ??? radiogenic ~20 TW ??? generation new idea : georeactor????????? ≡

U U+Th Number of antineutrinos (1/MeV/decay) Antineutrino 1.8 MeV e Energy Spectra of 238 U, 232 Th and 40 K Decays e Energy Spectra of 238 U, 232 Th and 40 K Decays 238 U  206 Pb He + 6 e e MeV 232 Th  208 Pb He + 4 e e MeV 40 K  40 Ca + e - + e MeV (89.3 %) 40 K + e -  40 Ar + e MeV (10.7 %) 238 U  206 Pb He + 6 e e MeV 232 Th  208 Pb He + 4 e e MeV 40 K  40 Ca + e - + e MeV (89.3 %) 40 K + e -  40 Ar + e MeV (10.7 %)

CoreMantleCrust Sediment Our Reference Earth Model [Th] /[U ] ~ 3.9 outer / inner U: 0, Th: 0 U: 0, Th: 0 outer / inner U: 0, Th: 0 U: 0, Th: 0 (units: ppm) continental U: 2.8, U: 2.8, Th: 10.7 Th: 10.7oceanic U: 1.7, U: 1.7, Th: 6.9 Th: 6.9continental U: 2.8, U: 2.8, Th: 10.7 Th: 10.7oceanic U: 1.7, U: 1.7, Th: 6.9 Th: 6.9 upper / lower U: 0.012, Th: U: 0.012, Th: upper / lower U: 0.012, Th: U: 0.012, Th: upper U: 2.8, Th: 10.7 U: 2.8, Th: 10.7middle U: 1.6, Th: 6.1 U: 1.6, Th: 6.1lower U: 0.2, Th: 1.2 U: 0.2, Th: 1.2upper U: 2.8, Th: 10.7 U: 2.8, Th: 10.7middle U: 1.6, Th: 6.1 U: 1.6, Th: 6.1lower U: 0.2, Th: 1.2 U: 0.2, Th: 1.2 U: 0.10, Th: 0.22

geoneutrino production points observed by KamLAND km Geoneutrino Production in Our Reference Model crust mantle sediment Cumulative Flux (1/cm 2 /sec) cumulative geoneutrino flux (U-chain) (U-chain)~70% ~25% <5%

Antineutrino Energy (MeV) Events/0.17 MeV [U]+[Th] = 19 ev 2.38±0.01 Accidental Coincidence # of events Background 127 ±13 Total best fit 80.4± ±0.2 Reactor e short lived long lived 42 ±11 13 C ( ,n) 16 O Energy Distributions of Candidate & Background Events signal 152 # of geoneutrinos: 25 events

Maximum Likelihood Analysis for Geoneutrino Flux # of U,Th: free parameter,  m 2,sin 2 2  : best fit value±1 , 13 C( ,n) 16 O: peak width & height: free parameter confidence interval for # of detected geoneutrinos (N U – N Th )/(N U + N Th ) N U + N Th best fit CL 68.3% CL 95.4% CL 99.7% Th/U~3.9Th/U~3.9 reference model

First Geoneutrino Results Assuming Th/U~  2 KamLAND observed total number of geoneutrinos: total number of geoneutrinos: U+Th (best fit) : 28 U+Th (best fit) : 28 U+Th (rate analysis) : 25 U+Th (rate analysis) : 25 BSE prediction 1.45x e /(target protonyear) 1.45x e /(target protonyear) 1.62x10 7 cm -2 s -1 at KamLAND 1.62x10 7 cm -2 s -1 at KamLAND 60 TW from our reference model 60 TW from our reference model 99% confidence upper limit of e flux:

Conclusion KamLAND Collaboration (China-France-Japan-US)

13 C ( ,n) 16 O* Correlated Background   source in LS 206 Pb 210 Bi 210 Po 210 Pb d22.3 ystable138.4 d  (long-lived Rn decay product) p 12 C*   (4.4 MeV) prompt 16 O* n p recoil proton +   (6.13 MeV) e + e - (6.05MeV) prompt n delayed  (2.2 MeV) 13 C  + 17 O* ( 1.1% in 12 C) recoil proton

Survived Background Sources Survived Background Sources Background # of events 9 Li/ 8 He 4.8 ±0.9 Accidental Coincidence Coincidence2.69±0.02 Fast Neutron 13 C ( ,n) 16 O* < ±7.1 Total 17.8 ±7.3 Q deposit > 10 6 p.e.  T  < 0.5 s 0.5<  T< 1 ms  R < 2 m  n 9 Li 9 Be 8 Be+n  :178.3 ms 9 Li background rate: 0.03 ev/day

N obs /N no oscillation Ratio of Observed to Expected e Ratio of Observed to Expected e Flux for Reactor Neutrino Experiments KamLAND LMA:  m 2 = 5.5x10 -5 eV 2  m 2 = 5.5x10 -5 eV 2 sin 2 2  = sin 2 2  = 0.833LMA:  m 2 = 5.5x10 -5 eV 2  m 2 = 5.5x10 -5 eV 2 sin 2 2  = sin 2 2  = 0.833

neutrino tomography Future Plan SNO+ Finland KamLAND

e Event Selection ① inverse  - decay selection 2.6 < E prompt < 8.5 MeV 1.8 < E delay <2.6 MeV 0.5 <  T< 1000  s  L < 2 m no OD signals tagging efficiency 89.8% ②  -induced spallation event cut  T  < 2 s for showering/bad   T  < 2 s &  L  < 3m along  dead-time 9.7% ③ fiducial selection R < 5.5 m : ton ④ data sample (2 nd result): days exposure time = ton-year prompt delayed

More exotic, non-oscillations models for the antineutrino channel start being less favored by data Decay * excluded at 95% CL * V.Barger et al. Phys. Rev. Lett. 82 (1999) 2640 Decoherence † excluded at 94% CL † E.Lisi et al., Phys. Rev. Lett. 85 (2000) 1166

Geoneutrino Fathers and Grandfather Fathers : G. Eder, Terrestrial Neutrinos, G. Eder, Terrestrial Neutrinos, Nucl. Phys. 78, 657 (1966) Nucl. Phys. 78, 657 (1966) G.Geophysics by Neutrinos, G. Marx, Geophysics by Neutrinos, Grandfather : G. Gamow, Letter to F. Reines (1953) G. Gamow, Letter to F. Reines (1953) Czechoslovak J. Phys. B19, 1471 (1969) J. Phys. B19, 1471 (1969)Czechoslovak

Space and Time Correlations between Prompt and Delayed Events 0.5<  T<500  s 0<  L<100 cm 0.9<E prompt <2.7 MeV TT LL

Systematic% Scintillator volume 2.1 Fiducial fraction 4.2 Energy threshold 2.3 Cuts efficiency 1.6 Live time 0.06 Reactor P thermal 2.1 Fuel composition 1.0 Time lag 0.01 Antineutrino spectrum 2.5 Antineutrino x-section 0.2 Total6.5 Systematic Errors (for reactor neutrino flux) 150  s <  T< 10 ms  L < 3 m 12 B 12 N 12 B 12 N τ=29.1ms Q=13.4MeV τ=15.9ms Q=17.3MeV distribution: uniformly in space uniformly in space

2. Oscillation Studies by Reactor Antineutrinos Reactor Antineutrinos 235 U + n  N 1 + N 2 + xn +6.1   e + (201.8±0.5 MeV) Nuclear reactors are very intense sources of e from Nuclear reactors are very intense sources of e from the  -decays of neutron-rich fragments : the  -decays of neutron-rich fragments : E prompt (e + ) = E  MeV 2-step signature : prompt : e + ionization, annihilation prompt : e + ionization, annihilation delayed : thermal neutron capture on p delayed : thermal neutron capture on p E delayed (  ) = 2.2 MeV,  t ~ 200  s Antineutrinos are detected through inverse  -decay : e + p  e + + n E th = 1.8 MeV 1/3 of total e ’s ν e +p→n+e + cross section ν e +p→n+e + cross section E v (MeV)

13 C( , n) 16 O* (n, p) 12 C(n, n  ) 12 C 13 C( , n) 16 O Expected Energy Expected Energy Spectra of 13 C ( ,n) 16 O*, 16 O Correlated Events Expected Energy Expected Energy Spectra of 13 C ( ,n) 16 O*, 16 O Correlated Events free parameter in likelihood analysis peak height for reactor neutrinos peak height for reactor neutrinos peak height & width for geoneutrinos peak height & width for geoneutrinos reactor geo- geo-

expected (no oscillation) observed Time Dependence of Observed Event Rate 90% CL ···· best fit fit constrained through expected background (0.03 events/day)

More Data Crustal thickness Sediment thickness longitude (deg.) latitude (deg.) U/Th in Japan and near Kamioka

Background Level in KamLAND-II 14,11,10 C : major background sources KamLAND-IIKamLAND-II

Expected Energy Spectrum of Single Events in KamLAND-II Expected Energy Spectrum of Single Events in KamLAND-II 11 C CNO pep 7 Be 3 years data