Section 7.5 Equivalence Relations Longin Jan Latecki Temple University, Philadelphia

Slides:



Advertisements
Similar presentations
Equivalence Relations
Advertisements

Section 7.5: Equivalence Relations Def: A relation R on a set A is called an equivalence relation if it is reflexive, symmetric, and transitive. Ex: Let.
Equivalence Relations
Equivalence Relations
Relations Relations on a Set. Properties of Relations.
CSE115/ENGR160 Discrete Mathematics 04/26/12 Ming-Hsuan Yang UC Merced 1.
Discrete Mathematics Lecture 5 Alexander Bukharovich New York University.
1 Chapter Equivalence, Order, and Inductive Proof.
Chap6 Relations Def 1: Let A and B be sets. A binary relation from A
Representing Relations Using Matrices
Applied Discrete Mathematics Week 11: Graphs
8.4 Closures of Relations. Intro Consider the following example (telephone line, bus route,…) abc d Is R, defined above on the set A={a, b, c, d}, transitive?
1 Set Theory. Notation S={a, b, c} refers to the set whose elements are a, b and c. a  S means “a is an element of set S”. d  S means “d is not an element.
Relations Chapter 9.
Chapter 9 1. Chapter Summary Relations and Their Properties n-ary Relations and Their Applications (not currently included in overheads) Representing.
Applied Discrete Mathematics Week 10: Equivalence Relations
Equivalence Relations MSU CSE 260. Outline Introduction Equivalence Relations –Definition, Examples Equivalence Classes –Definition Equivalence Classes.
Chapter Relations and Their Properties 8.2 n-ary Relations and Their Applications 8.3 Representing Relations 8.4 Closures of Relations 8.5 Equivalence.
Exam 2 Review 8.2, 8.5, 8.6, Thm. 1 for 2 roots, Thm. 2 for 1 root Theorem 1: Let c 1, c 2 be elements of the real numbers. Suppose r 2 -c 1.
Exam 2 Review 7.5, 7.6, |A1  A2  A3| =∑|Ai| - ∑|Ai ∩ Aj| + |A1∩ A2 ∩ A3| |A1  A2  A3  A4| =∑|Ai| - ∑|Ai ∩ Aj| + ∑ |Ai∩ Aj ∩ Ak| - |A1∩
Properties of Relations In many applications to computer science and applied mathematics, we deal with relations on a set A rather than relations from.
Chapter 9. Chapter Summary Relations and Their Properties Representing Relations Equivalence Relations Partial Orderings.
Chapter 9. Chapter Summary Relations and Their Properties n-ary Relations and Their Applications (not currently included in overheads) Representing Relations.
Discrete Math for CS Binary Relation: A binary relation between sets A and B is a subset of the Cartesian Product A x B. If A = B we say that the relation.
2.6 Equivalence Relation §1.Equivalence relation §Definition 2.18: A relation R on a set A is called an equivalence relation if it is reflexive, symmetric,
Chapter 9. Section 9.1 Binary Relations Definition: A binary relation R from a set A to a set B is a subset R ⊆ A × B. Example: Let A = { 0, 1,2 } and.
Relations, Functions, and Matrices Mathematical Structures for Computer Science Chapter 4 Copyright © 2006 W.H. Freeman & Co.MSCS Slides Relations, Functions.
8.3 Representing Relations Directed Graphs –Vertex –Arc (directed edge) –Initial vertex –Terminal vertex.
1 Closures of Relations: Transitive Closure and Partitions Sections 8.4 and 8.5.
Copyright © Cengage Learning. All rights reserved. CHAPTER 8 RELATIONS.
Rosen, Section 8.5 Equivalence Relations
Relations and their Properties
Relations, Functions, and Matrices Mathematical Structures for Computer Science Chapter 4 Copyright © 2006 W.H. Freeman & Co.MSCS Slides Relations, Functions.
Relation. Combining Relations Because relations from A to B are subsets of A x B, two relations from A to B can be combined in any way two sets can be.
Chapter 9. Chapter Summary Relations and Their Properties n-ary Relations and Their Applications (not currently included in overheads) Representing Relations.
Chapter Relations and Their Properties
Relations Section 9.1, 9.3—9.5 of Rosen Spring 2012
Chapter 8: Relations. 8.1 Relations and Their Properties Binary relations: Let A and B be any two sets. A binary relation R from A to B, written R : A.
8.4 Closures of Relations Definition: The closure of a relation R with respect to property P is the relation obtained by adding the minimum number of.
Copyright © Cengage Learning. All rights reserved. CHAPTER 8 RELATIONS.
8.5 Equivalence Relations
1 Section 4.2 Equivalence Relations A binary relation is an equivalence relation if it has the three properties reflexive, symmetric, and transitive (RST).
RelationsCSCE 235, Spring Introduction A relation between elements of two sets is a subset of their Cartesian products (set of all ordered pairs.
1 Equivalence relations Binary relations: –Let S1 and S2 be two sets, and R be a (binary relation) from S1 to S2 –Not every x in S1 and y in S2 have such.
MAT 2720 Discrete Mathematics Section 3.3 Relations
1 Discrete Structures – CNS2300 Text Discrete Mathematics and Its Applications (5 th Edition) Kenneth H. Rosen Chapter 7 Relations.
Set Operations Section 2.2.
§R1∪R2§R1∪R2 §R 1 ∩R 2 R1-R2R1-R2 2.4 Operations on Relations.
§ 第 3 周起每周一交作业,作业成绩占总成绩的 15% ; § 平时不定期的进行小测验,占总成绩的 15% ; § 期中考试成绩占总成绩的 20% ;期终考试成绩占总成绩的 50% § 张宓
Section 9.3. Section Summary Representing Relations using Matrices Representing Relations using Digraphs.
Chapter8 Relations 8.1: Relations and their properties.
Binary Relation: A binary relation between sets A and B is a subset of the Cartesian Product A x B. If A = B we say that the relation is a relation on.
Relations Chapter 9 Copyright © McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill.
The Relation Induced by a Partition
Representing Relations Using Digraphs
Relations and Their Properties
Relations Binary relations represent relationships between the elements of two sets. A binary relation R from set A to set B is defined by: R  A 
Equivalence Relations
Relations Chapter 9.
Reflexivity, Symmetry, and Transitivity
Chapter 3 The Real Numbers.
Chapter 2 Sets and Functions.
8.5 Equivalence Relations
Discrete Math (2) Haiming Chen Associate Professor, PhD
Chapter 3 The Real Numbers.
Equivalence relations
Equivalence Relations
Equivalence Relations
Rayat Shikshan Sanstha’s S.M.Joshi College, Hadapsar -28
Chapter 8 (Part 2): Relations
Presentation transcript:

Section 7.5 Equivalence Relations Longin Jan Latecki Temple University, Philadelphia

We can group properties of relations together to define new types of important relations. _________________ Definition: A relation R on a set A is an equivalence relation iff R is reflexive symmetric transitive Two elements related by an equivalence relation are called equivalent. Examples of equivalence relations: Ex. 1, p. 508 Ex. 4, p. 509

An equivalence class of an element x: [x] = {y | is in R} [x] is the subset of all elements related to [x] by R. The element in the bracket is called a representative of the equivalence class. We could have chosen any one. Theorem: Let R be an equivalence relation on A. Then either [a] = [b] or [a] ∩[b] = Φ The number of equivalence classes is called the rank of the equivalence relation. Let A={a,b,c} and R be given by a digraph:

Theorem: Let R be an equivalence relation on a set A. The equivalence classes of R partition the set A into disjoint nonempty subsets whose union is the entire set. This partition is denoted A/R and called the quotient set, or the partition of A induced by R, or, A modulo R. Definition: Let S 1, S 2,..., S n be a collection of subsets of a set A. Then the collection forms a partition of A if the subsets are nonempty, disjoint and exhaust A: Note that { {}, {1,3}, {2} } is not a partition (it contains the empty set). { {1,2}, {2, 3} } is not a partition because …. { {1}, {2} } is not a partition of {1, 2, 3} because none of its blocks contains 3.

It is easy to recognize equivalence relations using digraphs: The equivalence class of a particular element forms a universal relation (contains all possible arcs) between the elements in the equivalence class. The (sub)digraph representing the subset is called a complete (sub)digraph, since all arcs are present. Example: All possible equivalence relations on a set A with 3 elements:

1. Determine whether the relations represented by these zero-one matrices are equivalence relations. If yes, with how many equivalence classes? 2. What are the equivalence classes (sets in the partition) of the integers arising from congruence modulo 4? 3. Can you count the number of equivalence relations on a set A with n elements. Can you find a recurrence relation? The answers are 1 for n = 1 2 for n = 2 5 for n = 3 How many for n = 4?

Theorem (Bell number) Let p(n) denotes the number of different equivalence relations on a set with n elements (which is equivalent to the number of partitions of the set with n elements). Then p(n) is called Bell number, named in honor of Eric Temple BellEric Temple Bell Examples: p(0)=1, since there is only one partition of the empty set: into the empty collection of subsets p(1)=C(0,0)p(0)=1, since {{1}} is the only partition of {1} p(2)=C(1,0)p(1)+C(1,1)p(0)=1+1=5, since portions of {1,2} are {{1,2}} and {{1},{2}} p(3)=5, since, the set { 1, 2, 3 } has these five partitions. { {1}, {2}, {3} }, sometimes denoted by 1/2/3. { {1, 2}, {3} }, sometimes denoted by 12/3. { {1, 3}, {2} }, sometimes denoted by 13/2. { {1}, {2, 3} }, sometimes denoted by 1/23. { {1, 2, 3} }, sometimes denoted by 123.

Proof (Bell number) : We want to portion {1, 2, …, n}. For a fixed j, A is a subset of j elements from {1, 2, …, n-1} union {n}. Note that j can have values from 0 to n-1. We can select a subset of j elements from {1, 2, …, n-1} in C(n-1,j) ways, and we have p(n-1-j) partitions of the remaining n-1-j elements. ■

Theorem: If R1 and R2 are equivalence relations on A, then R1∩R2 is an equivalence relation on A. Proof: It suffices to show that the intersection of reflexive relations is reflexive, symmetric relations is symmetric, and transitive relations is transitive.

Definition: Let R be a relation on A. Then the reflexive, symmetric, transitive closure of R, tsr(R), is an equivalence relation on A, called the equivalence relation induced by R. Example:

Theorem: tsr(R) is an equivalence relation. Proof: We need to show that tsr(R) is still symmetric and reflexive. Since we only add arcs vs. deleting arcs when computing closures it must be that tsr(R) is reflexive since all loops on the diagraph must be present when constructing r(R). If there is an arc then the symmetric closure of r(R) ensures there is an arc. Now argue that if we construct the transitive closure of sr(R) and we add an edge because there is a path from x to z, then there must also exist a path from z to x (why?) and hence we also must add an edge. Hence the transitive closure of sr(R) is symmetric.