Thursday, Oct. 30, 2014PHYS 1443-004, Fall 2014 Dr. Jaehoon Yu 1 PHYS 1443 – Section 004 Lecture #19 Thursday, Oct. 30, 2014 Dr. Jaehoon Yu Rolling Kinetic.

Slides:



Advertisements
Similar presentations
Physics 203 College Physics I Fall 2012
Advertisements

Physics 201: Lecture 18, Pg 1 Lecture 18 Goals: Define and analyze torque Introduce the cross product Relate rotational dynamics to torque Discuss work.
Dynamics of Rotational Motion
 Angular speed, acceleration  Rotational kinematics  Relation between rotational and translational quantities  Rotational kinetic energy  Torque 
Rotational Dynamics Chapter 9.
Physics 215 – Fall 2014Lecture Welcome back to Physics 215 Today’s agenda: Extended objects Torque Moment of inertia.
Chapter 10: Rotation. Rotational Variables Radian Measure Angular Displacement Angular Velocity Angular Acceleration.
Physics 2211: Lecture 38 Rolling Motion
Physics 106: Mechanics Lecture 02
Tuesday, Nov. 25, 2014PHYS , Fall 2014 Dr. Jaehoon Yu 1 PHYS 1443 – Section 004 Lecture #24 Tuesday, Nov. 25, 2014 Dr. Jaehoon Yu Refresher: Simple.
Tuesday, Oct. 28, 2014PHYS , Fall 2014 Dr. Jaehoon Yu 1 PHYS 1443 – Section 004 Lecture #18 Tuesday, Oct. 28, 2014 Dr. Jaehoon Yu Torque and Angular.
Chapter 10 Rotational Motion.
Thursday, Oct. 23, 2014PHYS , Fall 2014 Dr. Jaehoon Yu 1 PHYS 1443 – Section 004 Lecture #17 Thursday, Oct. 23, 2014 Dr. Jaehoon Yu Torque & Vector.
Chapter 11 Angular Momentum.
Chapter 11 Angular Momentum. The Vector Product There are instances where the product of two vectors is another vector Earlier we saw where the product.
Tuesday, June 30, 2015PHYS , Summer 2014 Dr. Jaehoon Yu 1 PHYS 1441 – Section 001 Lecture #11 Tuesday, June 30, 2015 Dr. Jaehoon Yu Newton’s Law.
Thursday, June 18, 2015PHYS , Summer 2015 Dr. Jaehoon Yu 1 PHYS 1441 – Section 001 Lecture #7 Thursday, June 18, 2015 Dr. Jaehoon Yu Projectile.
Lecture 18 Rotational Motion
PHYS 1441 – Section 002 Lecture #22 Monday, April 22, 2013 Dr. Jaehoon Yu Work, Power and Energy in Rotation Angular Momentum Angular Momentum Conservation.
Monday, June 25, 2007PHYS , Summer 2007 Dr. Jaehoon Yu 1 PHYS 1443 – Section 001 Lecture #14 Monday, June 25, 2007 Dr. Jaehoon Yu Torque Vector.
Wednesday, Oct. 23, 2002PHYS , Fall 2002 Dr. Jaehoon Yu 1 PHYS 1443 – Section 003 Lecture #12 Monday, Oct. 23, 2002 Dr. Jaehoon Yu 1.Rocket Propulsion.
AP Physics C: Mechanics Chapter 11
Monday, Nov. 19, 2007 PHYS , Fall 2007 Dr. Jaehoon Yu 1 PHYS 1443 – Section 002 Lecture #21 Monday, Nov. 19, 2007 Dr. Jae Yu Work, Power and Energy.
When the axis of rotation is fixed, all particles move in a circle. Because the object is rigid, they move through the same angular displacement in the.
Tuesday, Sept. 23, 2014PHYS , Fall 2014 Dr. Jaehoon Yu 1 PHYS 1443 – Section 004 Lecture #10 Tuesday, Sept. 23, 2014 Dr. Jaehoon Yu Newton’s Laws.
PHYS 1441 – Section 002 Lecture #21 Monday, April 15, 2013 Dr. Jaehoon Yu Moment of Inertia Torque and Angular Acceleration Rotational Kinetic Energy Today’s.
Tuesday, Nov. 4, 2014PHYS , Fall 2014 Dr. Jaehoon Yu 1 PHYS 1443 – Section 004 Lecture #20 Tuesday, Nov. 4, 2014 Dr. Jaehoon Yu Angular Momentum.
Monday, Oct. 27, 2003PHYS , Fall 2003 Dr. Jaehoon Yu 1 PHYS 1443 – Section 003 Lecture #16 Monday, Oct. 27, 2002 Dr. Jaehoon Yu 1.Center of Mass.
Monday, June 22, 2015PHYS , Summer 2015 Dr. Jaehoon Yu 1 PHYS 1441 – Section 001 Lecture #8 Monday, June 22, 2015 Dr. Jaehoon Yu Newton’s Second.
Thursday, Sept. 18, 2014PHYS , Fall 2014 Dr. Jaehoon Yu 1 PHYS 1443 – Section 004 Lecture #9 Thursday, Sept. 18, 2014 Dr. Jaehoon Yu Newton’s Laws.
Wednesday, Apr. 15, 2009PHYS , Spring 2009 Dr. Jaehoon Yu PHYS 1441 – Section 002 Lecture #19 Wednesday, Apr. 15, 2009 Dr. Jaehoon Yu Relationship.
Spring 2002 Lecture #13 Dr. Jaehoon Yu 1.Rotational Energy 2.Computation of Moments of Inertia 3.Parallel-axis Theorem 4.Torque & Angular Acceleration.
Rotational Kinetic Energy An object rotating about some axis with an angular speed, , has rotational kinetic energy even though it may not have.
Tuesday, June 24, 2014PHYS , Summer 2014 Dr. Jaehoon Yu 1 PHYS 1441 – Section 001 Lecture #12 Tuesday, June 24, 2014 Dr. Jaehoon Yu Work done by.
Wednesday, Nov. 20, 2002PHYS , Fall 2002 Dr. Jaehoon Yu 1 PHYS 1443 – Section 003 Lecture #19 Monday, Nov. 20, 2002 Dr. Jaehoon Yu 1.Energy of.
PHYS 1443 – Section 001 Lecture #18 Monday, April 18, 2011 Dr. Jaehoon Yu Torque & Vector product Moment of Inertia Calculation of Moment of Inertia Parallel.
Wednesday, July 2, 2014PHYS , Summer 2014 Dr. Jaehoon Yu 1 PHYS 1441 – Section 001 Lecture #16 Wednesday, July 2, 2014 Dr. Jaehoon Yu Rotational.
Wednesday, Nov. 14, 2007 PHYS , Fall 2007 Dr. Jaehoon Yu 1 PHYS 1443 – Section 002 Lecture #20 Wednesday, Nov. 14, 2007 Dr. Jae Yu Moment of Inertia.
1 Work in Rotational Motion Find the work done by a force on the object as it rotates through an infinitesimal distance ds = r d  The radial component.
PHYS 1441 – Section 002 Lecture #22
Tuesday, June 26, 2007PHYS , Summer 2006 Dr. Jaehoon Yu 1 PHYS 1443 – Section 001 Lecture #15 Tuesday, June 26, 2007 Dr. Jaehoon Yu Rotational.
Wednesday, Apr. 7, 2004PHYS , Spring 2004 Dr. Jaehoon Yu 1 PHYS 1441 – Section 004 Lecture #18 Wednesday, Apr. 7, 2004 Dr. Jaehoon Yu Torque Moment.
Chapter 11 Angular Momentum. The Vector Product and Torque The torque vector lies in a direction perpendicular to the plane formed by the position vector.
Wednesday, Nov. 10, 2004PHYS , Fall 2004 Dr. Jaehoon Yu 1 1.Moment of Inertia 2.Parallel Axis Theorem 3.Torque and Angular Acceleration 4.Rotational.
Two-Dimensional Rotational Dynamics 8.01 W09D2 Young and Freedman: 1.10 (Vector Product), , 10.4, ;
Monday, Dec. 6, 2010PHYS , Fall 2010 Dr. Jaehoon Yu 1 PHYS 1441 – Section 002 Lecture #23 Monday, Dec. 6, 2010 Dr. Jaehoon Yu Similarities Between.
Monday, Apr. 27, 2009PHYS , Spring 2009 Dr. Jaehoon Yu PHYS 1441 – Section 002 Lecture #20 Monday, Apr. 27, 2009 Dr. Jaehoon Yu Torque and Angular.
Wednesday, July 6, 2011PHYS , Summer 2011 Dr. Jaehoon Yu 1 PHYS 1443 – Section 001 Lecture #16 Wednesday, July 6, 2011 Dr. Jaehoon Yu Calculation.
Monday, Nov. 4, 2002PHYS , Fall 2002 Dr. Jaehoon Yu 1 PHYS 1443 – Section 003 Lecture #14 Monday, Nov. 4, 2002 Dr. Jaehoon Yu 1.Parallel Axis Theorem.
Wednesday, Oct. 29, 2003PHYS , Fall 2003 Dr. Jaehoon Yu 1 PHYS 1443 – Section 003 Lecture #17 Wednesday, Oct. 29, 2002 Dr. Jaehoon Yu 1.Rolling.
Chapter 10 Lecture 18: Rotation of a Rigid Object about a Fixed Axis: II.
Monday, Apr. 14, 2008 PHYS , Spring 2008 Dr. Jaehoon Yu 1 PHYS 1441 – Section 002 Lecture #21 Monday, Apr. 14, 2008 Dr. Jaehoon Yu Rolling Motion.
Wednesday, Nov. 13, 2002PHYS , Fall 2002 Dr. Jaehoon Yu 1 PHYS 1443 – Section 003 Lecture #17 Wednesday, Nov. 13, 2002 Dr. Jaehoon Yu 1.Conditions.
Monday, Nov. 12, 2007 PHYS , Fall 2007 Dr. Jaehoon Yu 1 PHYS 1443 – Section 002 Lecture #19 Monday, Nov. 12, 2007 Dr. Jae Yu Rolling Motion of.
PHYS 1443 – Section 001 Lecture #19
PHYS 1443 – Section 002 Lecture #19
PHYS 1443 – Section 003 Lecture #18
PHYS 1443 – Section 003 Lecture #16
PHYS 1441 – Section 002 Lecture #20
PHYS 1441 – Section 002 Lecture #21
PHYS 1443 – Section 001 Lecture #14
PHYS 1441 – Section 002 Lecture #22
PHYS 1443 – Section 003 Lecture #15
PHYS 1443 – Section 002 Lecture #18
Spring 2002 Lecture #15 Dr. Jaehoon Yu Mid-term Results
PHYS 1441 – Section 002 Lecture #21
PHYS 1441 – Section 002 Lecture #21
PHYS 1441 – Section 001 Lecture # 15
PHYS 1443 – Section 003 Lecture #14
PHYS 1443 – Section 003 Lecture #15
Presentation transcript:

Thursday, Oct. 30, 2014PHYS , Fall 2014 Dr. Jaehoon Yu 1 PHYS 1443 – Section 004 Lecture #19 Thursday, Oct. 30, 2014 Dr. Jaehoon Yu Rolling Kinetic Energy Work, Power and Energy in Rotation Angular Momentum Angular Momentum Conservation Conditions for Equilibrium Today’s homework is homework #10, due 11pm, Thursday, Nov. 6!!

Thursday, Oct. 30, Announcements 2 nd Non-comprehensive term exam –In class 9:30 – 10:50am, Thursday, Nov. 13 –Covers CH 10.1 through what we finish Tuesday, Nov. 11 –Mixture of multiple choice and free response problems –Bring your calculator but DO NOT input formula into it! Your phones or portable computers are NOT allowed as a replacement! –You can prepare a one 8.5x11.5 sheet (front and back) of handwritten formulae and values of constants for the exam None of the parts of the solutions of any problems No derived formulae, derivations of equations or word definitions! –Do NOT Miss the exam! PHYS , Fall 2014 Dr. Jaehoon Yu

Thursday, Oct. 30, 2014PHYS , Fall 2014 Dr. Jaehoon Yu 3 Ex: Rolling Kinetic Energy For a solid sphere as shown in the figure, calculate the linear speed of the CM at the bottom of the hill and the magnitude of linear acceleration of the CM. Solve this problem using Newton’s second law, the dynamic method. Gravitational Force, Since the forces Mg and n go through the CM, their moment arm is 0 and do not contribute to torque, while the static friction f causes torque M x h θ We know that What are the forces involved in this motion? Mg f Newton’s second law applied to the CM gives Frictional Force,Normal Force n x y We obtain Substituting f in dynamic equations

Thursday, Oct. 30, 2014PHYS , Fall 2014 Dr. Jaehoon Yu 4 Work, Power, and Energy in Rotation Let’s consider the motion of a rigid body with a single external force F exerting on the point P, moving the object by Δs.Δs. The work done by the force F as the object rotates through the infinitesimal distance Δ s=r Δ θ is What is F sin ϕ ? The tangential component of the force F.F. Since the magnitude of torque is r F sin ϕ, F  O r ΔθΔθ ΔsΔs What is the work done by radial component F cos ϕ ? Zero, because it is perpendicular to the displacement. The rate of work, or power, becomes How was the power defined in linear motion? The rotational work done by an external force equals the change in rotational Kinetic energy. The work put in by the external force then Fsinφ Fcosφ Work-kinetic Energy Theorem

Thursday, Oct. 30, 2014PHYS , Fall 2014 Dr. Jaehoon Yu 5 Angular Momentum of a Particle If you grab onto a pole while running, your body will rotate about the pole, gaining angular momentum. We’ve used the linear momentum to solve physical problems with linear motions, the angular momentum will do the same for rotational motions. Let’s consider a point-like object ( particle) with mass m located at the vector location r and moving with linear velocity v The angular momentum L of this particle relative to the origin O is What do you learn from this? If the direction of linear velocity points to the origin of rotation, the particle does not have any angular momentum. What is the unit and dimension of angular momentum? Note that L depends on origin O.Why?Because r changes The direction of L is +z.What else do you learn? Since p is mv, the magnitude of L becomes If the linear velocity is perpendicular to position vector, the particle moves exactly the same way as a point on a rim. z x y

Thursday, Oct. 30, 2014PHYS , Fall 2014 Dr. Jaehoon Yu 6 Angular Momentum and Torque Total external forces exerting on a particle is the same as the change of its linear momentum. Can you remember how net force exerting on a particle and the change of its linear momentum are related? Thus the torque-angular momentum relationship The same analogy works in rotational motion between torque and angular momentum. Net torque acting on the particle is The net torque acting on a particle is the same as the time rate change of its angular momentum x y z O p  L=rxp r m Why does this work? Because v is parallel to the linear momentum

Thursday, Oct. 30, 2014PHYS , Fall 2014 Dr. Jaehoon Yu 7 Angular Momentum of a System of Particles The total angular momentum of a system of particles about some point is the vector sum of the angular momenta of the individual particles Since the individual angular momentum can change, the total angular momentum of the system can change. Thus the time rate change of the angular momentum of a system of particles is equal to only the net external torque acting on the system Let’s consider a two particle system where the two exert forces on each other. Since these forces are the action and reaction forces with directions lie on the line connecting the two particles, the vector sum of the torque from these two becomes 0. Both internal and external forces can provide torque to individual particles. However, the internal forces do not generate net torque due to Newton’s third law.

Thursday, Oct. 30, 2014PHYS , Fall 2014 Dr. Jaehoon Yu 8 Ex. for Angular Momentum A particle of mass m is moving on the xy plane in a circular path of radius r and linear velocity v about the origin O. Find the magnitude and the direction of the angular momentum with respect to O. r x y v O Using the definition of angular momentum Since both the vectors, r and v, are on x-y plane and using right-hand rule, the direction of the angular momentum vector is +z (coming out of the screen) The magnitude of the angular momentum is So the angular momentum vector can be expressed as Find the angular momentum in terms of angular velocity  Using the relationship between linear and angular speed

Thursday, Oct. 30, 2014PHYS , Fall 2014 Dr. Jaehoon Yu 9 Angular Momentum of a Rotating Rigid Body Let’s consider a rigid body rotating about a fixed axis Each particle of the object rotates in the xy plane about the z-axis at the same angular speed, ω Thus the torque-angular momentum relationship becomes What do you see? Since I is constant for a rigid body Magnitude of the angular momentum of a particle of mass mimi about origin O is mivirimiviri x y z O p  L=rxp r m Summing over all particle’s angular momentum about z axis  is the angular acceleration The net external torque acting on a rigid body rotating about a fixed axis is equal to the moment of inertia about that axis multiplied by the object’s angular acceleration with respect to that axis.

Thursday, Oct. 30, 2014PHYS , Fall 2014 Dr. Jaehoon Yu 10 Example for Rigid Body Angular Momentum A rigid rod of mass M and length l is pivoted without friction at its center. Two particles of mass m1 m1 and m2 m2 are attached to either end of the rod. The combination rotates on a vertical plane with an angular speed of ω. Find an expression for the magnitude of the angular momentum. The moment of inertia of this system is First compute the net external torque m 1 g x y O l m1m1 m2m2  m 2 g If m1 m1 = m 2, no angular momentum because the net torque is 0. If θ  at equilibrium so no angular momentum. Find an expression for the magnitude of the angular acceleration of the system when the rod makes an angle θ with the horizon. Thus α becomes