Aerosol distribution and physical properties in the Titan atmosphere D. E. Shemansky 1, X. Zhang 2, M-C. Liang 3, and Y. L. Yung 2 1 SET/PSSD, California,

Slides:



Advertisements
Similar presentations
Eyk Bösche et al. BBC2 Workshop, Oktober 2004: Eyk Bösche et al. BBC2 Workshop, Oktober 2004: Simulation of skylight polarization with the DAK model and.
Advertisements

Temperature Measurements in the Lower Thermosphere Utilizing the RAIDS Near Infrared Spectrometer Physical Sciences Laboratories May 19, 2010 A. B. Christensen.
Global, Regional, and Urban Climate Effects of Air Pollutants Mark Z. Jacobson Dept. of Civil & Environmental Engineering Stanford University.
1 Ionospheres of the Terrestrial Planets Stan Solomon High Altitude Observatory National Center for Atmospheric Research
Nitrogen Chemistry in Titan’s Upper Atmosphere J. A. Kammer 1, D. E. Shemansky 2, X. Zhang 1, Y. L. Yung 1 1 Division of Geological and Planetary Sciences,
Titan’s Photochemical Model: Oxygen Species and Comparison with Triton and Pluto Vladimir Krasnopolsky Initial data: N 2 and CH 4 densities near the surface.
Revised tholin profile for the atmosphere of Titan Mao-Chang Liang 1, J. A. Kammer, X. Zhang 3, D. Shemansky 4, Y. L. Yung 2 1 Research Center for Environmental.
RHESSI 2003 October 28 Time Histories Falling fluxes following the peak Nuclear/511 keV line flux delayed relative to bremsstrahlung Fit to 511 keV line.
Distribution of H 2 O and SO 2 in the atmosphere of Venus Yung Y. 1, Zhang X. 1, Liang M.-C. 2 and Parkinson C. 3 1 California Institute of Technology.
1 Centrum Badań Kosmicznych PAN, ul. Bartycka 18A, Warsaw, Poland Vertical temperature profiles in the Venus.
Morphology of meteoric plasma layers in the ionosphere of Mars as observed by the Mars Global Surveyor Radio Science Experiment Withers, Mendillo, Hinson.
Radiative Modeling of the Atmosphere of Neptune Y. Yung 1, X. Zhang 1, R. Shia 1, M. Liang 2, G. Orton 3, A. Mainzer 3 and M. Burgdorf 4 1 Caltech, USA.
BASIC RADIATIVE TRANSFER. RADIATION & BLACKBODIES Objects that absorb 100% of incoming radiation are called blackbodies For blackbodies, emission ( 
Titan’s Atmospheric Chemistry Emily Schaller GE/AY 132 March 2004.
A 21 F A 21 F Parameterization of Aerosol and Cirrus Cloud Effects on Reflected Sunlight Spectra Measured From Space: Application of the.
AGU Fall MeetingDecember 4, 2005 Vijay Natraj (California Institute of Technology) Hartmut Bösch (Jet Propulsion Laboratory) Yuk Yung (California Institute.
METO 621 Lesson 27. Albedo 200 – 400 nm Solar Backscatter Ultraviolet (SBUV) The previous slide shows the albedo of the earth viewed from the nadir.
1 Satellite Remote Sensing of Particulate Matter Air Quality ARSET Applied Remote Sensing Education and Training A project of NASA Applied Sciences Pawan.
Pat Arnott, ATMS 749 Atmospheric Radiation Transfer CH4: Reflection and Refraction in a Homogenous Medium.
Atmospheric Monitoring in the TA experiment
Triton's thermosphere: another energy crisis? (a work in progress) Leslie Young (SwRI) Glenn Stark (Wellesley) Ron Vervack (JHU/APL)
 Assuming only absorbing trace gas abundance and AOD are retrieved, using CO 2 absorption band alone provides a DOF ~ 1.1, which is not enough to determine.
Upper haze on the night side of Venus from VIRTIS-M / Venus Express limb observations D. Gorinov (1,2), N. Ignatiev (1,2), L. Zasova (1,2), G. Piccioni.
Negative ions at Titan: tholins for Titan’s haze? Andrew Coates, Mullard Space Science Laboratory, UCL, UK With thanks to Frank Crary, Dave Young, Hunter.
Pat Arnott, ATMS 749, UNR, PRACTICAL CONSEQUENCES OF THE SCHWARZSCHILD EQUATION FOR RADIATION TRANSFER WHEN SCATTERING IS NEGLIGIBLE From Grant Petty’s.
Airglow on Titan During Eclipse R. A. West 1, J. M. Ajello 1, M. H. Stevens 2, D. F. Strobel 3, G. R. Gladstone 4, J.S. Evans 5, E.T. Bradley 6 1 Jet Propulsion.
The state of the plasma sheet and atmosphere at Europa D. E. Shemansky 1, Y. L. Yung 2, X. Liu 1, J. Yoshii 1, C. J. Hansen 3, A. Hendrix 4, L. W. Esposito.
Page 1© Crown copyright Aircraft observations of mineral dust.
1 The Organic Aerosols of Titan’s Atmosphere Christophe Sotin, Patricia M. Beauchamp and Wayne Zimmerman Jet Propulsion Laboratory, California Institute.
Optical properties Satellite observation ? T,H 2 O… From dust microphysical properties to dust hyperspectral infrared remote sensing Clémence Pierangelo.
Vertical Wavenumber Spectra of Gravity Waves in the Venus and Mars Atmosphere *Hiroki Ando, Takeshi Imamura, Bernd Häusler, Martin Pätzold.
The Second TEMPO Science Team Meeting Physical Basis of the Near-UV Aerosol Algorithm Omar Torres NASA Goddard Space Flight Center Atmospheric Chemistry.
COST 723 Training School - Cargese October 2005 KEY 1 Radiative Transfer Bruno Carli.
1 PHY Lecture 5 Interaction of solar radiation and the atmosphere.
COMPARATIVE TEMPERATURE RETRIEVALS BASED ON VIRTIS/VEX AND PMV/VENERA-15 RADIATION MEASUREMENTS OVER THE NORTHERN HEMISPHERE OF VENUS R. Haus (1), G. Arnold.
Yuk Yung (Caltech), M. C. Liang (Academia Sinica), X. Zhang (Caltech),
X. Zhang 1, R. Shia 1, M. Liang 2, C. Newman 1, D. Shemansky 3, Y. Yung 1, 1 Division of Geological and Planetary Sciences, California Institute of Technology,
Studying the Venus terminator thermal structure observed by SOIR/VEx with a 1D radiative transfer model A. Mahieux 1,2,3, J. T. Erwin 3, S. Chamberlain.
Stratospheric Aerosol Size Distribution Retrievals Using SAGE III Mark Hervig GATS Inc. Terry Deshler University of Wyoming.
UCLA Vector Radiative Transfer Models for Application to Satellite Data Assimilation K. N. Liou, S. C. Ou, Y. Takano and Q. Yue Department of Atmospheric.
Nitrogen Chemistry in Titan’s Upper Atmosphere J. A. Kammer †, D. E. Shemansky ‡, X. Zhang †, and Y. L. Yung † † California Institute of Technology, Pasadena,
SAGE III Aerosol Studies: Size Distribution Retrievals and Validation Mark Hervig GATS Inc.
Micro-structural size properties of Saturn’s rings determined from ultraviolet measurements made by the Cassini Ultraviolet Imaging Spectrograph Todd Bradley.
Fifth Workshop on Titan Chemistry April 2011, Kauai, Hawaii Organic Synthesis in the Atmosphere of Titan: Modeling and Recent Observations Yuk Yung.
Titan Glows in the Dark – West et al. and Ajello et al., 2012 R. A.. West, J. M. Ajello, M. H. Stevens, D. F. Strobel, G. R. Gladstone, J. S. Evans, and.
Haze and cloud in Pluto atmosphere Pascal Rannou, Franck Montmessin Service d'Aéronomie/IPSL, Université Versailles-St-Quentin.
SOIR Data Workshop SOIR science status A.C. Vandaele, A. Mahieux, S. Robert, R. Drummond, V. Wilquet, E. Neefs, B. Ristic, S. Berkenbosch, R. Clairquin.
Methane Distribution in Titan’s Atmosphere Spica + Shaula Occultations. Candidate Observations Symmetrical Methane Distribution Flatfield Issues Asymmetrical.
R. A. WEST, J. M. AJELLO, M. H. STEVENS, D. F. STROBEL, G. R. GLADSTONE, J.S. EVANS, T. BRADLEY, TITAN AIRGLOW DURING ECLIPSE 19 June 2012R. West 1.
Titan Airglow Spectra From 2004 and 2008 and Laboratory Results for UVIS, ISS and VIMS (800-11,000 Å) JOSEPH AJELLO JPL JACQUES GUSTIN MICHAEL STEVENS.
Saturn’s Auroras from the Cassini Ultraviolet Imaging Spectrograph Wayne Pryor Robert West Ian Stewart Don Shemansky Joseph Ajello Larry Esposito Joshua.
D. E. Shemansky† , J. A. Kammer ‡ , X. Zhang ‡ & Y. L. Yung‡
UVIS Saturn Atmosphere Occultation Prospectus
UVIS Data Analysis and Modeling: Saturn FUV images
Paulina Wolkenberg1, Marek Banaszkiewicz1
Photochemical processes on Titan
Titan tholin properties from occultation and emission observations
Saturn upper atmosphere structure
Iapetus as measured by Cassini UVIS
* 07/16/96 Constraints on Titan’s Hign Haze from Cassini UVIS/ISS and Huygens DISR Observations *
Jet Propulsion Lab, California Institute of Technology
Enceladus Plume Simulations
Monitoring Saturn's Upper Atmosphere Density Variations Using
Update on Lyman-alpha from Cassini, and Voyager
Cassini UVIS solar occultation
UVIS Saturn EUVFUV Data Analysis
Dione’s O2 Exosphere C. J. Hansen January 2013.
Revised tholin profile for the atmosphere of Titan
Titan Airglow FUV Limb Spectra From Cassini UVIS Observations
UVIS Titan T0, TA Analysis
Presentation transcript:

Aerosol distribution and physical properties in the Titan atmosphere D. E. Shemansky 1, X. Zhang 2, M-C. Liang 3, and Y. L. Yung 2 1 SET/PSSD, California, USA ; 2 CIT California, USA ; 3 Res. Ctr. Env. Change, Taipei, Taiwan

Extinction spectra in Cassini UVIS fuv stellar occultations show a continuum component with a spectral shape similar to the imaginary part of the refractive index obtained by Khare et al (1984) from deposits (tholin) in a laboratory discharge in an N 2 -CH 4 gas mixture. The UVIS fuv experiment also measures emission in scattered solar photons in the 1500 – 1900 A region, interpreted as Rayleigh scattering by tholin. The combination of extinction optical depth and measured absolute scattered solar photons in the same upper thermosphere volume is then used to infer a scattering cross section.

Cassini T0 encounter with near 90 o solar phase observing geometry

Cassini UVIS fuv emission spectrum from sub-solar 1040 km los at T0 Phase ~90 o

Tholin vertical distribution extracted in stellar occultations at TB encounter

(A) 1826h (km)1040 F S (9AU) (ph cm -2 s -1 A -1 )2.7 x 10 8 I(B)  (R A -1 ) 1.3 p iso4.9 x mm(Khare) i Q s (a,  ) (Mie) 4.9 x radius a (A)76  s (a,  ) (Mb) 8900[tholin] l (cm -2 )6.9 x [tholin] (cm -3 )3900[tholin]/[N]1.2 x Calculated tholin physical properties using Mie scattering theory

Derived tholin densities from stellar occultations at TB and T41

Comparison of Cassini UVIS and Voyager 1 occultation photometric inversions at ~1650 A

Global distribution The high altitude thermosphere tholin content shows dependence on latitude. The north and south polar regions have measureable tholin scattering only below 850 km compared to 1040 km at low latitude.

Titan TA encounter near 0 o phase Multiple exposures with N/S planet centered UVIS slit

Solar reflection in the Cassini UVIS fuv spectrum at the T0 and TA encounters. T0 is a low latitude 90 o phase sub solar los. TA is at 0 o phase and scans all latitudes through planet center pole to pole.

Cassini UVIS fuv spectra at selected los impact parameters showing the absence of solar photon scattering at and above 875 km; TA encounter south pole region

Cassini UVIS fuv spectra at selected los impact parameters showing the absence of solar photon scattering at and above 875 km; TA encounter north pole region

Comparison of the south pole region TA spectra with the UVIS simulated fuv solar model spectrum for zero extinction, normalized at 1850 A.

Conclusions The combined Cassini UVIS occultation and emission measurements of aerosol properties in the Titan atmosphere allow determination of basic properties. The application of Mie theory with the Khare et al. tholin refractive index measurements are used for the calculation of a mean cross section and particle size (76A radius) at the top of the atmosphere ( 1040 km) at low latitude. The derived vertical density profiles from several occultation events show two common deep vertical population depletions in the altitude range 700 – 800 km, and 400 – 500 km. The evidence indicates these features are persistent in location and depth on a ½ century scale based on comparison with Voyager results. It is evident from profile scale height that the aerosols must be produced at high altitude and diffuse downward, consistent with ion chemistry production (Coates et al., 2007, 2010). In addition the source must be a vertically distributed process; regeneration must occur below the depletion layers. The deep layered structure imposes limits on rate modeling. See Kammer et al. EPSC-DPS for relation to lower order hydrocarbons. The polar regions show aerosol scattering to be undetectable above 800 km altitude, 200 km below the measured scattering at 1040 km at low latitude.