Chapter 2 The Physical Layer 4/26/2017 www.ishuchita.com.

Slides:



Advertisements
Similar presentations
Chapter 2 The Physical Layer.
Advertisements

CMPE 150- Introduction to Computer Networks 1 CMPE 150 Fall 2005 Lecture 6 Introduction to Networks and the Internet.
Broadband local access technology
The Physical Layer Chapter 2 CN5E by Tanenbaum & Wetherall, © Pearson Education-Prentice Hall and D. Wetherall, 2011 Theoretical Basis for Data Communications.
CMPE 150- Introduction to Computer Networks 1 CMPE 150 Fall 2005 Lecture 9 Introduction to Computer Networks.
CMPE 150- Introduction to Computer Networks 1 CMPE 150 Fall 2005 Lecture 8 Introduction to Computer Networks.
20101 The Physical Layer Chapter Bandwidth-Limited Signals.
Fall 2008CSCI 690 CSCI-690 C omputer Networks: Shrinking the globe one click at a time Lecture 2 Khurram Kazi.
CSCI 370 CSCI-370 C omputer Networks: Shrinking the globe one click at a time Lecture 2 Khurram Kazi.
Cn ch21 The Physical Layer Chapter 2. cn ch22 The Theoretical Basis for Data Communication Fourier Analysis Bandwidth-Limited Signals Maximum Data Rate.
CMPE 150- Introduction to Computer Networks 1 CMPE 150 Fall 2005 Lecture 7 Introduction to Networks and the Internet.
CMPE 150 – Winter 2009 Lecture 5 January 20, 2009 P.E. Mantey.
CMPE 150 – Winter 2009 Lecture 4 January 15, 2009 P.E. Mantey.
1 Chapter 2 The Physical Layer The lowest layer of reference model. It defines the mechanical, electrical, and timing interfaces to the network.
Physical Layer 1b session 1 TELE3118: Network Technologies Week 1: Physical Layer Some slides have been taken from:  Computer Networking: A Top.
1 The Physical Layer Chapter 2. 2 The Theoretical Basis for Data Communication Fourier Analysis –Any reasonably behaved periodic function can be written.
16 February 2003 TU/e Computer Science, System Architecture and Networking 1 Communication media Thanks to A. Tanenbaum.
The Physical Layer Chapter Digital Modulation and Multiplexing Baseband Transmission Passband Transmission Frequency Division Multiplexing.
Chi-Cheng Lin, Winona State University CS412 Introduction to Computer Networking & Telecommunication DSL, Cable, and Mobile Telephone System.
The physical layer. The Theoretical Basis for Data Communication Fourier Analysis Any periodical signal can be decomposed as a sum of sinusoidal signals.
Computer networks 6: Wireless and Mobile Networks.
The Physical Layer Chapter
Computer Networks NYUS FCSIT Spring 2008 Igor TRAJKOVSKI, Ph.D. Associate Professor
The Physical Layer Chapter 2. The Theoretical Basis for Data Communication Fourier Analysis Bandwidth-Limited Signals Maximum Data Rate of a Channel.
Modeling and Analysis of Computer Networks (The physical Layer) Ali Movaghar Fall 2006.
TRANSMISSION MEDIA’S BY KULA.
1 Recap - Introduction. 2 Three Concepts Services Interfaces Protocols.
1 The Physical Layer Chapter 2. 2 The Theoretical Basis for Data Communication Fourier Analysis Bandwidth-Limited Signals Maximum Data Rate of a Channel.
1 Business Telecommunications Data and Computer Communications Chapter 4 Transmission Media.
The Physical Layer Chapter 2 Computer Networks, Fifth Edition by Andrew Tanenbaum and David Wetherall, © Pearson Education-Prentice Hall, 2011.
Sharif University of Technology Physical layer: Wireless Transmission.
Chi-Cheng Lin, Winona State University CS 313 Introduction to Computer Networking & Telecommunication Modulation, Multiplexing, & Public Switched Telephone.
The Physical Layer. The Theoretical Basis for Data Communication Fourier analysis Niquist chriterium for bandwidth-limited channel Shannon maximum data.
The Physical Layer Part1. The Theoretical Basis for Data Communication Fourier Analysis Bandwidth-Limited Signals Maximum Data Rate of a Channel.
Modeling and Analysis of Computer Networks (The physical Layer) Ali Movaghar Winter 2009.
09/20/2007EETS Chapter 2/2 (Physical Layer) Public Switched Telephone System (2) The Mobile Telephone System Cable Television.
-1- Georgia State UniversitySensorweb Research Laboratory CSC4220/6220 Computer Networks Dr. WenZhan Song Associate Professor, Computer Science.
The Physical Layer Chapter 2. The Theoretical Basis for Data Communication Fourier Analysis Bandwidth-Limited Signals Maximum Data Rate of a Channel.
Fall 2005 By: H. Veisi Computer networks course Olum-fonoon Babol Chapter 2 Physical layer.
The physical layer. 2 Physical Layer  Sending raw bits across “the wire”.  Issues: –What’s being transmitted. –Transmission medium. –How it’s being.
The Physical Layer Chapter 2. The Theoretical Basis for Data Communication Fourier Analysis Bandwidth-Limited Signals Maximum Data Rate of a Channel.
The Physical Layer Chapter 2 – Part 1 Ch The Theoretical Basis for Data Communication Fourier Analysis Bandwidth-Limited Signals Maximum Data Rate.
The Physical Layer Chapter 2. The Theoretical Basis for Data Communication a)Fourier Analysis b)Bandwidth-Limited Signals c)Maximum Data Rate of a Channel.
Computer Networks 1 (Mạng Máy Tính 1) Lectured by: Nguyễn Đức Thái.
The Physical Layer Chapter 2. The Theoretical Basis for Data Communication Fourier Analysis Bandwidth-Limited Signals Maximum Data Rate of a Channel.
The Physical Layer Chapter 2 – Part 2 Ch The Local Loop: Modems, ADSL, and Wireless The use of both analog and digital transmissions for a computer.
The Physical Layer Highlights of this chapter Highlights of this chapter Theoretical Basis for Data Communication Theoretical Basis for Data Communication.
نظام المحاضرات الالكترونينظام المحاضرات الالكتروني.
Chapter 2 The Physical Layer.
William Stallings Data and Computer Communications 7th Edition
Wireless Transmission The Electromagnetic Spectrum Radio Transmission Microwave Transmission Infrared and Millimeter Waves Lightwave Transmission.
Transmision Media. Transmission media types a)Guided b)Unguided.
Introduction1-1 Data Communications and Computer Networks Chapter 1 CS 3830 Lecture 2 Omar Meqdadi Department of Computer Science and Software Engineering.
Chi-Cheng Lin, Winona State University CS 313 Introduction to Computer Networking & Telecommunication DSL and Cable.
1 Kyung Hee University Chapter 9 Using Telephone and Cable Networks for Data Transmission.
Computer Networks Farzad Rojan Chapter 2: Physical Layer.
Chapter 9 Using Telephone and Cable Networks for Data Transmission.
The Physical Layer Chapter 2. Physical layer deals with data communication.it decides way the other layers work. Example, when network connect, may have.
The Physical Layer Chapter 2. The Theoretical Basis for Data Communication Fourier Analysis Bandwidth-Limited Signals Maximum Data Rate of a Channel.
The Physical Layer Dr. ir. S.S. Msanjila RIS 251.
The Physical Layer Chapter 2 Institute of Information Science and Technology. Chengdu University YiYong 2008 年 2 月 25 日.
Introduction to Computer Networks
2017 session 1 TELE3118: Network Technologies Week 1: Physical Layer
2012 session 1 TELE3118: Network Technologies Week 1: Physical Layer
Chapter 2 The Physical Layer.
شناسنامه درس نام درس: شبكه‌هاي كامپيوتري نام مؤلف: اندرو تننبام
Communication Satellites
The Physical Layer Chapter 2
The Physical Layer Chapters
Presentation transcript:

Chapter 2 The Physical Layer 4/26/2017 www.ishuchita.com

The Theoretical Basis for Data Communication Fourier Analysis Bandwidth-Limited Signals Maximum Data Rate of a Channel 4/26/2017 www.ishuchita.com

Bandwidth-Limited Signals A binary signal and its root-mean-square Fourier amplitudes. (b) – (c) Successive approximations to the original signal. 4/26/2017 www.ishuchita.com

Bandwidth-Limited Signals (2) (d) – (e) Successive approximations to the original signal. 4/26/2017 www.ishuchita.com

Bandwidth-Limited Signals (3) Relation between data rate and harmonics. 4/26/2017 www.ishuchita.com

Guided Transmission Data Magnetic Media Twisted Pair Coaxial Cable Fiber Optics 4/26/2017 www.ishuchita.com

Twisted Pair (a) Category 3 UTP. (b) Category 5 UTP. 4/26/2017 www.ishuchita.com

Coaxial Cable A coaxial cable. 4/26/2017 www.ishuchita.com

Fiber Optics (a) Three examples of a light ray from inside a silica fiber impinging on the air/silica boundary at different angles. (b) Light trapped by total internal reflection. 4/26/2017 www.ishuchita.com

Transmission of Light through Fiber Attenuation of light through fiber in the infrared region. 4/26/2017 www.ishuchita.com

Fiber Cables (a) Side view of a single fiber. (b) End view of a sheath with three fibers. 4/26/2017 www.ishuchita.com

A comparison of semiconductor diodes and LEDs as light sources. Fiber Cables (2) A comparison of semiconductor diodes and LEDs as light sources. 4/26/2017 www.ishuchita.com

A fiber optic ring with active repeaters. Fiber Optic Networks A fiber optic ring with active repeaters. 4/26/2017 www.ishuchita.com

Fiber Optic Networks (2) A passive star connection in a fiber optics network. 4/26/2017 www.ishuchita.com

Wireless Transmission The Electromagnetic Spectrum Radio Transmission Microwave Transmission Infrared and Millimeter Waves Lightwave Transmission 4/26/2017 www.ishuchita.com

The Electromagnetic Spectrum The electromagnetic spectrum and its uses for communication. 4/26/2017 www.ishuchita.com

Radio Transmission (a) In the VLF, LF, and MF bands, radio waves follow the curvature of the earth. (b) In the HF band, they bounce off the ionosphere. 4/26/2017 www.ishuchita.com

Politics of the Electromagnetic Spectrum The ISM bands in the United States. 4/26/2017 www.ishuchita.com

Lightwave Transmission Convection currents can interfere with laser communication systems. A bidirectional system with two lasers is pictured here. 4/26/2017 www.ishuchita.com

Communication Satellites Geostationary Satellites Medium-Earth Orbit Satellites Low-Earth Orbit Satellites Satellites versus Fiber 4/26/2017 www.ishuchita.com

Communication Satellites Communication satellites and some of their properties, including altitude above the earth, round-trip delay time and number of satellites needed for global coverage. 4/26/2017 www.ishuchita.com

Communication Satellites (2) The principal satellite bands. 4/26/2017 www.ishuchita.com

Communication Satellites (3) VSATs using a hub. 4/26/2017 www.ishuchita.com

Low-Earth Orbit Satellites Iridium (a) The Iridium satellites from six necklaces around the earth. (b) 1628 moving cells cover the earth. 4/26/2017 www.ishuchita.com

Globalstar (a) Relaying in space. (b) Relaying on the ground. 4/26/2017 www.ishuchita.com

Public Switched Telephone System Structure of the Telephone System The Politics of Telephones The Local Loop: Modems, ADSL and Wireless Trunks and Multiplexing Switching 4/26/2017 www.ishuchita.com

Structure of the Telephone System (a) Fully-interconnected network. (b) Centralized switch. (c) Two-level hierarchy. 4/26/2017 www.ishuchita.com

Structure of the Telephone System (2) A typical circuit route for a medium-distance call. 4/26/2017 www.ishuchita.com

Major Components of the Telephone System Local loops Analog twisted pairs going to houses and businesses Trunks Digital fiber optics connecting the switching offices Switching offices Where calls are moved from one trunk to another 4/26/2017 www.ishuchita.com

The Politics of Telephones The relationship of LATAs, LECs, and IXCs. All the circles are LEC switching offices. Each hexagon belongs to the IXC whose number is on it. 4/26/2017 www.ishuchita.com

The Local Loop: Modems, ADSL, and Wireless The use of both analog and digital transmissions for a computer to computer call. Conversion is done by the modems and codecs. 4/26/2017 www.ishuchita.com

Modems (a) A binary signal (c) Frequency modulation (b) Amplitude modulation (c) Frequency modulation (d) Phase modulation 4/26/2017 www.ishuchita.com

Modems (2) (a) QPSK. (b) QAM-16. (c) QAM-64. 4/26/2017 www.ishuchita.com

Modems (3) (a) (b) (a) V.32 for 9600 bps. (b) V32 bis for 14,400 bps. 4/26/2017 www.ishuchita.com

Digital Subscriber Lines Bandwidth versus distanced over category 3 UTP for DSL. 4/26/2017 www.ishuchita.com

Digital Subscriber Lines (2) Operation of ADSL using discrete multitone modulation. 4/26/2017 www.ishuchita.com

Digital Subscriber Lines (3) A typical ADSL equipment configuration. 4/26/2017 www.ishuchita.com

Architecture of an LMDS system. Wireless Local Loops Architecture of an LMDS system. 4/26/2017 www.ishuchita.com

Frequency Division Multiplexing (a) The original bandwidths. (b) The bandwidths raised in frequency. (b) The multiplexed channel. 4/26/2017 www.ishuchita.com

Wavelength Division Multiplexing 4/26/2017 www.ishuchita.com

Time Division Multiplexing The T1 carrier (1.544 Mbps). 4/26/2017 www.ishuchita.com

Time Division Multiplexing (2) Delta modulation. 4/26/2017 www.ishuchita.com

Time Division Multiplexing (3) Multiplexing T1 streams into higher carriers. 4/26/2017 www.ishuchita.com

Time Division Multiplexing (4) Two back-to-back SONET frames. 4/26/2017 www.ishuchita.com

Time Division Multiplexing (5) SONET and SDH multiplex rates. 4/26/2017 www.ishuchita.com

Circuit Switching (a) Circuit switching. (b) Packet switching. 4/26/2017 www.ishuchita.com

Message Switching (a) Circuit switching (b) Message switching (c) Packet switching 4/26/2017 www.ishuchita.com

A comparison of circuit switched and packet-switched networks. Packet Switching A comparison of circuit switched and packet-switched networks. 4/26/2017 www.ishuchita.com

The Mobile Telephone System First-Generation Mobile Phones: Analog Voice Second-Generation Mobile Phones: Digital Voice Third-Generation Mobile Phones: Digital Voice and Data 4/26/2017 www.ishuchita.com

Advanced Mobile Phone System (a) Frequencies are not reused in adjacent cells. (b) To add more users, smaller cells can be used. 4/26/2017 www.ishuchita.com

Channel Categories The 832 channels are divided into four categories: Control (base to mobile) to manage the system Paging (base to mobile) to alert users to calls for them Access (bidirectional) for call setup and channel assignment Data (bidirectional) for voice, fax, or data 4/26/2017 www.ishuchita.com

D-AMPS Digital Advanced Mobile Phone System (a) A D-AMPS channel with three users. (b) A D-AMPS channel with six users. 4/26/2017 www.ishuchita.com

GSM Global System for Mobile Communications GSM uses 124 frequency channels, each of which uses an eight-slot TDM system 4/26/2017 www.ishuchita.com

A portion of the GSM framing structure. 4/26/2017 www.ishuchita.com

CDMA – Code Division Multiple Access (a) Binary chip sequences for four stations (b) Bipolar chip sequences (c) Six examples of transmissions (d) Recovery of station C’s signal 4/26/2017 www.ishuchita.com

Third-Generation Mobile Phones: Digital Voice and Data Basic services an IMT-2000 network should provide High-quality voice transmission Messaging (replace e-mail, fax, SMS, chat, etc.) Multimedia (music, videos, films, TV, etc.) Internet access (web surfing, w/multimedia.) 4/26/2017 www.ishuchita.com

Cable Television Community Antenna Television Internet over Cable Spectrum Allocation Cable Modems ADSL versus Cable 4/26/2017 www.ishuchita.com

Community Antenna Television An early cable television system. 4/26/2017 www.ishuchita.com

Internet over Cable Cable television 4/26/2017 www.ishuchita.com

Internet over Cable (2) The fixed telephone system. 4/26/2017 www.ishuchita.com

Spectrum Allocation Frequency allocation in a typical cable TV system used for Internet access 4/26/2017 www.ishuchita.com

Cable Modems Typical details of the upstream and downstream channels in North America. 4/26/2017 www.ishuchita.com