1 Séminaire AIM (20/06/06)Romain Teyssier Modélisation numérique multi-échelle des écoulements MHD en astrophysique Romain Teyssier (CEA Saclay) Sébastien.

Slides:



Advertisements
Similar presentations
NSF Site Visit Madison, May 1-2, 2006 Magnetic Helicity Conservation and Transport R. Kulsrud and H. Ji for participants of the Center for Magnetic Self-organization.
Advertisements

PARMA UNIVERSITY SIMULATIONS OF THE ISOLATED BUILDING TEST CASE F. AURELI, A. MARANZONI & P. MIGNOSA DICATeA, Parma University Parco Area delle Scienze.
FLASH Workshop Hamburger Sternwarte, University of Hamburg, Feb 15 – Feb 16, 2012 A Solution Accurate, Efficient and Stable Unsplit Staggered Mesh MHD.
Finite Volume II Philip Mocz. Goals Construct a robust, 2nd order FV method for the Euler equation (Navier-Stokes without the viscous term, compressible)
Algorithm Development for the Full Two-Fluid Plasma System
Jim Uschock Naval Surface Warfare Center Dahlgren Division (540) Quantitative Methods in Defense & National Security “Understanding.
Efficient Parallelization for AMR MHD Multiphysics Calculations Implementation in AstroBEAR Collaborators: Adam Frank Brandon Shroyer Chen Ding Shule Li.
Brookhaven Science Associates U.S. Department of Energy Neutrino Factory and Muon Collider Collaboration Meeting May 9 – 15, 2002, Shelter Island, New.
GRMHD Simulations of Jet Formation with Newly-Developed GRMHD Code K.-I. Nishikawa (NSSTC/UAH), Y. Mizuno (NSSTC/MSFC/NPP), P. Hardee (UA), S. Koide (Kumamoto.
AstroBEAR Finite volume hyperbolic PDE solver Discretizes and solves equations of the form Solves hydrodynamic and MHD equations Written in Fortran, with.
High-Order Adaptive and Parallel Discontinuous Galerkin Methods for Hyperbolic Conservation Laws J. E. Flaherty, L. Krivodonova, J. F. Remacle, and M.
An Advanced Simulation and Computing (ASC) Academic Strategic Alliances Program (ASAP) Center at The University of Chicago The Center for Astrophysical.
Prediction of Fluid Dynamics in The Inertial Confinement Fusion Chamber by Godunov Solver With Adaptive Grid Refinement Zoran Dragojlovic, Farrokh Najmabadi,
SSL (UC Berkeley): Prospective Codes to Transfer to the CCMC Developers: W.P. Abbett, D.J. Bercik, G.H. Fisher, B.T. Welsch, and Y. Fan (HAO/NCAR)
Module on Computational Astrophysics Jim Stone Department of Astrophysical Sciences 125 Peyton Hall : ph :
Review of MHD simulations of accretion disks MHD simulations of disk winds & protostellar jets Describe new Godunov+CT MHD Code Tests Application to MRI.
Computations of Fluid Dynamics using the Interface Tracking Method Zhiliang Xu Department of Mathematics University of Notre.
A TWO-FLUID NUMERICAL MODEL OF THE LIMPET OWC CG Mingham, L Qian, DM Causon and DM Ingram Centre for Mathematical Modelling and Flow Analysis Manchester.
Direct and iterative sparse linear solvers applied to groundwater flow simulations Matrix Analysis and Applications October 2007.
Magnetic accelerations of relativistic jets. Serguei Komissarov University of Leeds UK TexPoint fonts used in EMF. Read the TexPoint manual before you.
MA/CS471 Lecture 8 Fall 2003 Prof. Tim Warburton
Hybrid WENO-FD and RKDG Method for Hyperbolic Conservation Laws
A Look at High-Order Finite- Volume Schemes for Simulating Atmospheric Flows Paul Ullrich University of Michigan.
Jonathan Carroll-Nellenback University of Rochester.
An Unsplit Ideal MHD code with Adaptive Mesh Refinement Ravi Samtaney Computational Plasma Physics Group Princeton Plasma Physics Laboratory Princeton.
Relativistic MHD Simulations of Relativistic Jets with RAISHIN * We have developed a new three-dimensional general relativistic magnetohydrodynamic (GRMHD)
Jonathan Carroll-Nellenback University of Rochester.
Solution of the St Venant Equations / Shallow-Water equations of open channel flow Dr Andrew Sleigh School of Civil Engineering University of Leeds, UK.
C M C C Centro Euro-Mediterraneo per i Cambiamenti Climatici COSMO General Meeting - September 8th, 2009 COSMO WG 2 - CDC 1 An implicit solver based on.
Adaptive Mesh Refinement MHD Ravi Samtaney Computational Plasma Physics Group Princeton Plasma Physics Laboratory Princeton University CEMM Meeting, November.
Recent advances in Astrophysical MHD Jim Stone Department of Astrophysical Sciences & PACM Princeton University, USA Recent collaborators: Tom Gardiner.
Simulations of Compressible MHD Turbulence in Molecular Clouds Lucy Liuxuan Zhang, CITA / University of Toronto, Chris Matzner,
A Novel Wave-Propagation Approach For Fully Conservative Eulerian Multi-Material Simulation K. Nordin-Bates Lab. for Scientific Computing, Cavendish Lab.,
ParCFD Parallel computation of pollutant dispersion in industrial sites Julien Montagnier Marc Buffat David Guibert.
Discontinuous Galerkin Methods and Strand Mesh Generation
Numerical Schemes for Streamer Discharges at Atmospheric Pressure
Approximate Riemann Solvers for Multi-component flows Ben Thornber Academic Supervisor: D.Drikakis Industrial Mentor: D. Youngs (AWE) Aerospace Sciences.
Discontinuous Galerkin Methods for Solving Euler Equations Andrey Andreyev Advisor: James Baeder Mid.
On Some Recent Developments in Numerical Methods for Relativistic MHD
7. Introduction to the numerical integration of PDE. As an example, we consider the following PDE with one variable; Finite difference method is one of.
Ash3d: A new USGS tephra fall model Hans Schwaiger 1 Larry Mastin 2 Roger Denlinger 2 1 Alaska Volcano Observatory 2 Cascade Volcano Observatory.
Stable, Circulation- Preserving, Simplicial Fluids Sharif Elcott, Yiying Tong, Eva Kanso, Peter Schröder, and Mathieu Desbrun.
J.-Ph. Braeunig CEA DAM Ile-de-FrancePage 1 Jean-Philippe Braeunig CEA DAM Île-de-France, Bruyères-le-Châtel, LRC CEA-ENS Cachan
Ash3d: A new USGS tephra fall model
© IFP Controlled CO 2 | Diversified fuels | Fuel-efficient vehicles | Clean refining | Extended reserves Écrire ici dans le masque le nom de votre Direction.
3D Spherical Shell Simulations of Rising Flux Tubes in the Solar Convective Envelope Yuhong Fan (HAO/NCAR) High Altitude Observatory (HAO) – National Center.
Introducing Flow-er: a Hydrodynamics Code for Relativistic and Newtonian Flows Patrick M. Motl Joel E. Tohline, & Luis Lehner (Louisiana.
SFUMATO: A self-gravitational MHD AMR code Tomoaki Matsumoto ( Hosei Univerisity ) Circumstellar disk Outflow Magnetic field Protostar Computational domain.
Gas-kineitc MHD Numerical Scheme and Its Applications to Solar Magneto-convection Tian Chunlin Beijing 2010.Dec.3.
AMS 691 Special Topics in Applied Mathematics Lecture 8
Minimum Numerical Viscosity to Care the Carbuncle Instability Tomoyuki Hanawa (Chiba U.) Collaborators: Hayato Mikami, Tomoaki Matsumoto before after.
CO 2 maîtrisé | Carburants diversifiés | Véhicules économes | Raffinage propre | Réserves prolongées © IFP Écrire ici dans le masque le nom de votre Direction.
1 Application of Weighted Essentially Non-Oscillatory Limiting to Compact Interpolation Schemes Debojyoti Ghosh Graduate Research Assistant Alfred Gessow.
MODELING RELATIVISTIC MAGNETIZED PLASMA Komissarov Serguei University of Leeds UK.
Lecture Objectives: Define 1) Reynolds stresses and
PLUTO: a modular code for computational astrophysics Developers: A. Mignone 1,2, G. Bodo 2 1 The University of Chicago, ASC FLASH Center 2 INAF Osseratorio.
Magnetic field structure of relativistic jets in AGN M. Roca-Sogorb 1, M. Perucho 2, J.L. Gómez 1, J.M. Martí 3, L. Antón 3, M.A. Aloy 3 & I. Agudo 1 1.
Lecture Objectives: - Numerics. Finite Volume Method - Conservation of  for the finite volume w e w e l h n s P E W xx xx xx - Finite volume.
Compressible MHD turbulence in molecular clouds Lucy Liuxuan Zhang Prof. Chris Matzner University of Toronto.
Numflux etc... & geometric source terms. Updating a grid.
Chamber Dynamic Response Modeling
A TWO-FLUID NUMERICAL MODEL OF THE LIMPET OWC
ივანე ჯავახიშვილის სახელობის
Finite Volume Method Philip Mocz.
Introduction to Fluid Dynamics & Applications
Tomoaki Matsumoto (Hosei Univ. / NAOJ) Masahiro N. Machida (NAOJ)
High Accuracy Schemes for Inviscid Traffic Models
Low Order Methods for Simulation of Turbulence in Complex Geometries
Conservative Dynamical Core (CDC)
CASA Day 9 May, 2006.
Presentation transcript:

1 Séminaire AIM (20/06/06)Romain Teyssier Modélisation numérique multi-échelle des écoulements MHD en astrophysique Romain Teyssier (CEA Saclay) Sébastien Fromang (Oxford) Emmanuel Dormy (ENS Paris) Patrick Hennebelle (ENS Paris) François Bouchut (ENS Paris)

2 Séminaire AIM (20/06/06)Romain Teyssier Les équations de la MHD idéale Conservation de la masse Conservation de la quantité de mouvement Conservation de l’énergie Conservation du flux magnétique Pression totale Energie totale

3 Séminaire AIM (20/06/06)Romain Teyssier Euler equations using finite volumes: decades of experience in robust advection & shock-capturing schemes Godunov; MUSCL (Van Leer); PPM (Woodward & Colella) Toro 1997 Ideal MHD : Euler system augmented by the induction equation 1.Finite volume and cell-centered schemes –div B cleaning using Poisson solver –div B waves (Powell’s 8 waves formulation) –div B damping Crockett et al Constrained Transport & staggered grid (Yee 66; Evans & Hawley 88) –1D Godunov fluxes to compute EMF Balsara&Spicer 99 –2D Riemann solver to compute EMF Londrillo&DelZanna 01,05; Ziegler 04,05 –High-order extension of Balsara’s scheme Gardiner & Stone 05 Our goal: design fast, second-order accurate, Godunov-type, for a tree-based AMR scheme with Constrained Transport Teyssier, Fromang & Dormy 2006, JCP, in press Fromang, Hennebelle & Teyssier 2006, A&A, in press Applications: Kinematic Dynamos and astrophysical MHD Godunov method and MHD

4 Séminaire AIM (20/06/06)Romain Teyssier Godunov method for 1D Euler systems Piecewise constant initial states: self-similar Riemann solution Finite volumes: conservation laws in integral form Modified equation has diffusion term

5 Séminaire AIM (20/06/06)Romain Teyssier 2D Riemann problems:  self-similar (exact ?) solution relative to corner points Flux function is not self-similar (line averaging)  predictor-corrector schemes ? 2D schemes for Euler systems 2D Euler system in integral form: Godunov scheme No predictor step. Flux functions computed using 1D Riemann problem at time t n in each normal direction. Courant condition: Runge-Kutta scheme Predictor step using Godunov scheme and  t/2 Flux functions computed using 1D Riemann problem at time t n+1/2 in each normal direction Corner Transport Upwind Predictor step in transverse direction only Flux functions computed using 1D Riemann problem at time t n+1/2 in each normal direction

6 Séminaire AIM (20/06/06)Romain Teyssier For piecewise constant initial data, the flux function is self-similar at corner points The induction equation in 2D Finite-surface approximation (Constrained Transport) Integral form using Stoke’s theorem For pure induction, the 2D Riemann problem has the following exact (upwind) solution: Numerical diffusivity and Induction Riemann problem

7 Séminaire AIM (20/06/06)Romain Teyssier RAMSES: a tree-based AMR parallel code Fully Threaded Tree (Khokhlov 98) Cartesian mesh refined on a cell by cell basis octs: small grid of 8 cells, pointing towards 1 parent cell 6 neighboring parent cells 8 children octs Coarse-fine boundaries: buffer zone 2-cell thick Time integration using recursive sub-cycling Parallel computing using the MPI library Domain decomposition using « space filling curves » Good scalability up to 4096 processors Euler equations, Poisson equation, PIC module Cooling module, implicit diffusion solver Induction equation Ideal MHD needs 7-wave Riemann solvers: Lax-Friedrich and Roe

8 Séminaire AIM (20/06/06)Romain Teyssier AMR and Constrained Transport « Divergence-free preserving » restriction and prolongation operators Balsara (2001) Toth & Roe (2002) Flux conserving interpolation and averaging within cell faces using TVD slopes in 2 dimensions EMF correction for conservative update at coarse-fine boundaries ? ? ??

9 Séminaire AIM (20/06/06)Romain Teyssier n=400 Compound wave (Torrilhon 2004) n=800 n=20000 n eff =10 6  : 2 solutions: 2 shocks or 1 c.w.  : 2 shocks only Dissipation properties are crucial. Only AMR can resolve scales small enough within reasonable CPU time.

10 Séminaire AIM (20/06/06)Romain Teyssier Field loop advection test (Gardiner & Stone 2005)

11 Séminaire AIM (20/06/06)Romain Teyssier Current sheet and magnetic reconnection

12 Séminaire AIM (20/06/06)Romain Teyssier ABC flow and the fast dynamo: towards R m =10 6 ? Galloway&Frisch (1986) Lau&Finn (1993)

13 Séminaire AIM (20/06/06)Romain Teyssier Magnetized molecular cloud collapse Rotating, magnetized spherical cloud embedded in low density medium. Barotropic equation of state. AMR with 15 to 20 levels of refinements. Questions for star formation theory: 1- angular momentum transfer 2- fragmentation (binary formation) 3- jets and outflows Face-on B z =0 Side-on Face-on M/  =2 Side-on

14 Séminaire AIM (20/06/06)Romain Teyssier Details in the outflow structure Lax-Friedrich Riemann solverRoe Riemann solver Conical jet (Roe) versus cylindrical jet (Lax-Friedrich) ? Sensitive to small-scale (numerical) dissipation.

15 Séminaire AIM (20/06/06)Romain Teyssier Conclusion and perspectives