Methods for 3D Shape Matching and Retrieval Marcin Novotni & Reinhard Klein University of Bonn Computer Graphics Group
Our Aim #1 … , , , Given an example: Find the most similar object(s) in a database … , , , Marcin Novotni Reinhard Klein University of Bonn Computer Graphics Group
Motivation Lots of 3D archives: Search engines for data: WWW Proprietary databases ... Search engines for data: Text, 2D images, music (MIDI), … Emerging since 1998 for 3D Marcin Novotni Reinhard Klein University of Bonn Computer Graphics Group
Our Aim #2 Direct matching Alignment Establishing correspondences Marcin Novotni Reinhard Klein University of Bonn Computer Graphics Group
Motivation Partial matching/retrieval Marcin Novotni Reinhard Klein University of Bonn Computer Graphics Group
Motivation Partial matching/retrieval Statistical shape analysis Morphing Texture transfer Registration Marcin Novotni Reinhard Klein University of Bonn Computer Graphics Group
General Problem Abstract representation facilitating: identification of salient features of 3D objects description of features comparison (matching) Marcin Novotni Reinhard Klein University of Bonn Computer Graphics Group
Overview Matching for 3D Shape Retrieval Correspondence Matching Marcin Novotni Reinhard Klein University of Bonn Computer Graphics Group
Matching for 3D Shape Retrieval Marcin Novotni Reinhard Klein University of Bonn Computer Graphics Group
→ D( ) D : General Problem We need a Descriptor Marcin Novotni Reinhard Klein University of Bonn Computer Graphics Group
d( , ) d( , ) D( ) D( ) : = General Problem We need a Distance Measure Marcin Novotni Reinhard Klein University of Bonn Computer Graphics Group
d( , ) d( , ) d( , ) ≤ ≤ General Problem We need a Distance Measure : Close to (application driven) notion of resemblance Computationally cheap and robust d( , ) d( , ) d( , ) ≤ ≤ Marcin Novotni Reinhard Klein University of Bonn Computer Graphics Group
D( ) ≡ x1 xn 3D Zernike Descriptors Feature vectors Xi : 3D Zernike Descriptors [Canterakis ’99, Novotni & Klein ’03, ’04] Distance Measure: Euclidean Distance D( ) ≡ x1 xn Marcin Novotni Reinhard Klein University of Bonn Computer Graphics Group
3D Zernike Descriptors Retrieval performance [Novotni & Klein ‘03 ’04] Slightly better than [Funkhouser et al. ’02] Object class dependent performance! Class dependent coefficient importance! Marcin Novotni Reinhard Klein University of Bonn Computer Graphics Group
3D Zernike Descriptors Faces Chairs Airplanes Importance Coeff No. (Frequency) Marcin Novotni Reinhard Klein University of Bonn Computer Graphics Group
3D Zernike Descriptors Relevance feedback: Learning Machines: User selects relevant / irrelevant items Distance measure is tuned Learning Machines: SVM (Support vector machines) [Vapnik ‘95] One class SVM [Schölkopf et al. ’99] (K)BDA ((Kernel) Biased Discriminant Analysis) [Zhou et al. ‘01] Marcin Novotni Reinhard Klein University of Bonn Computer Graphics Group
Correspondence Matching Marcin Novotni Reinhard Klein University of Bonn Computer Graphics Group
Geometric Similarity Estimation Idea [Novotni & Klein 2001]: Definition of „geometric“ similarity in terms of a geometric distance Intuitive, simple, robust. Marcin Novotni Reinhard Klein University of Bonn Computer Graphics Group
Geometric Similarity Estimation Database objects example Normalized volumetric error 0.00 6.78 8.85 30.29 38.09 67.53 Marcin Novotni Reinhard Klein University of Bonn Computer Graphics Group
Geometric Similarity Estimation Classification by user set threshold Marcin Novotni Reinhard Klein University of Bonn Computer Graphics Group
Geometric Similarity Estimation Measures deformation magnitude Marcin Novotni Reinhard Klein University of Bonn Computer Graphics Group
Correspondence Matching ? Marcin Novotni Reinhard Klein University of Bonn Computer Graphics Group
Correspondence Matching ? Marcin Novotni Reinhard Klein University of Bonn Computer Graphics Group
Correspondence Matching ? Marcin Novotni Reinhard Klein University of Bonn Computer Graphics Group
Correspondence Matching ? Marcin Novotni Reinhard Klein University of Bonn Computer Graphics Group
Correspondence Matching Ideally: dense mapping ? Marcin Novotni Reinhard Klein University of Bonn Computer Graphics Group
Correspondence Matching Ideally: dense mapping Deformation by mapping semantics [D’Arcy Thompson 1917: On Growth and Form ] Marcin Novotni Reinhard Klein University of Bonn Computer Graphics Group
Correspondence Matching Ideally: dense mapping Easier: mapping salient points Curvature extremes Corners (Harris points in 2D) Etc… Scale space extremes Marcin Novotni Reinhard Klein University of Bonn Computer Graphics Group
Correspondence Matching Ideally: dense mapping Easier: mapping salient points Curvature extremes Corners (Harris points in 2D) Etc… Scale space extremes Marcin Novotni Reinhard Klein University of Bonn Computer Graphics Group
Correspondence Matching Scale Space extremes [Lindeberg ‘94] Marcin Novotni Reinhard Klein University of Bonn Computer Graphics Group
Correspondence Matching We have: Salient points Spatial position Size of local blobs How to match??? Marcin Novotni Reinhard Klein University of Bonn Computer Graphics Group
Correspondence Matching Criteria for correspondences: Similar Local geometries Constellations of points Marcin Novotni Reinhard Klein University of Bonn Computer Graphics Group
Correspondence Matching Criteria for correspondences: Similar Local geometries Constellations of points Marcin Novotni Reinhard Klein University of Bonn Computer Graphics Group
Correspondence Matching Local description Marcin Novotni Reinhard Klein University of Bonn Computer Graphics Group
Correspondence Matching Local description Marcin Novotni Reinhard Klein University of Bonn Computer Graphics Group
Correspondence Matching Assumption: Similar local descriptors Similar local geometries Marcin Novotni Reinhard Klein University of Bonn Computer Graphics Group
Correspondence Matching Criteria for correspondences: Similar Local geometries Constellations of points Marcin Novotni Reinhard Klein University of Bonn Computer Graphics Group
Correspondence Matching Similar constellations of points Smooth mappings leave constellations consistent Idea Constellations are consistent if mapping is smooth Marcin Novotni Reinhard Klein University of Bonn Computer Graphics Group
Correspondence Matching Marcin Novotni Reinhard Klein University of Bonn Computer Graphics Group
Correspondence Matching Marcin Novotni Reinhard Klein University of Bonn Computer Graphics Group
Correspondence Matching Marcin Novotni Reinhard Klein University of Bonn Computer Graphics Group
Correspondence Matching Marcin Novotni Reinhard Klein University of Bonn Computer Graphics Group
Correspondence Matching Marcin Novotni Reinhard Klein University of Bonn Computer Graphics Group
Correspondence Matching Similar constellations of points Idea: Constellations are consistent if mapping is smooth Thin Plate Spline interpolation [Brookstein ’89] minimize: Total curvature Marcin Novotni Reinhard Klein University of Bonn Computer Graphics Group
Correspondence Matching minimize: Minimizer (Thin Plate Spline interpolator): Affine part Nonlinear deformation Marcin Novotni Reinhard Klein University of Bonn Computer Graphics Group
Correspondence Matching minimize: Minimizer (Thin Plate Spline interpolator): 2D Thin Plate Spline Marcin Novotni Reinhard Klein University of Bonn Computer Graphics Group
Correspondence Matching minimize: Minimizer (Thin Plate Spline interpolator): Can be computed by a (N+4)x(N+4) matrix inversion Marcin Novotni Reinhard Klein University of Bonn Computer Graphics Group
Correspondence Matching Find (sub)sets of correspondences: Small local descriptor distances Small deformation energy Hierarchical pruning and clustering Using: Local descriptors Geometrical constellation consistency Marcin Novotni Reinhard Klein University of Bonn Computer Graphics Group
Correspondence Matching Marcin Novotni Reinhard Klein University of Bonn Computer Graphics Group
Correspondence Matching Marcin Novotni Reinhard Klein University of Bonn Computer Graphics Group
Correspondence Matching Marcin Novotni Reinhard Klein University of Bonn Computer Graphics Group
Correspondence Matching Marcin Novotni Reinhard Klein University of Bonn Computer Graphics Group
Correspondence Matching Marcin Novotni Reinhard Klein University of Bonn Computer Graphics Group
Correspondence Matching Marcin Novotni Reinhard Klein University of Bonn Computer Graphics Group
Correspondence Matching Marcin Novotni Reinhard Klein University of Bonn Computer Graphics Group
Correspondence Matching Marcin Novotni Reinhard Klein University of Bonn Computer Graphics Group
Correspondence Matching Marcin Novotni Reinhard Klein University of Bonn Computer Graphics Group
Correspondence Matching New avenues: Local Descriptions for retrieval Online Learning for local descriptions Dense matching from salient points Etc. Marcin Novotni Reinhard Klein University of Bonn Computer Graphics Group
Danke, DFG! Marcin Novotni Reinhard Klein University of Bonn Computer Graphics Group
3D Zernike Descriptors Basis functions in the unit sphere: SH on the sphere We use SH on the sphere to retain rotation invariance… Marcin Novotni Reinhard Klein University of Bonn Computer Graphics Group
3D Zernike Descriptors Basis functions in the unit sphere: SH on the sphere Function of the radius … and a radial function other than sampling. Since the radial function depends only on the radius, the rotation invariance is preserved. Rotation invariant! Marcin Novotni Reinhard Klein University of Bonn Computer Graphics Group
Object function, e.g. voxel grid 3D Zernike Descriptors Basis functions in the unit sphere: 3D Zernike Moments [Canterakis ‘99]: … and a radial function other than sampling. Since the radial function depends only on the radius, the rotation invariance is preserved. Object function, e.g. voxel grid Marcin Novotni Reinhard Klein University of Bonn Computer Graphics Group
3D Zernike Descriptors 3D Zernike Descriptors: Amplitudes of the Zernike decomposition Rotation invariant And the zernike descriptors are defined similarly to the SH amplitudes: we gather the zernike moments with upper index from –l to l for a given lower indices n and l. Due to the properties of SH, the norms of these vectors will be rotation invariant. Marcin Novotni Reinhard Klein University of Bonn Computer Graphics Group
3D Zernike Descriptors Basis functions in the unit sphere: SH on the sphere We use SH on the sphere to retain rotation invariance… Marcin Novotni Reinhard Klein University of Bonn Computer Graphics Group
3D Zernike Descriptors Basis functions in the unit sphere: SH on the sphere Function of the radius … and a radial function other than sampling. Since the radial function depends only on the radius, the rotation invariance is preserved. Rotation invariant! Marcin Novotni Reinhard Klein University of Bonn Computer Graphics Group
Object function, e.g. voxel grid 3D Zernike Descriptors Basis functions in the unit sphere: 3D Zernike Moments [Canterakis ‘99]: … and a radial function other than sampling. Since the radial function depends only on the radius, the rotation invariance is preserved. Object function, e.g. voxel grid Marcin Novotni Reinhard Klein University of Bonn Computer Graphics Group
3D Zernike Descriptors 3D Zernike Descriptors: Amplitudes of the Zernike decomposition Rotation invariant And the zernike descriptors are defined similarly to the SH amplitudes: we gather the zernike moments with upper index from –l to l for a given lower indices n and l. Due to the properties of SH, the norms of these vectors will be rotation invariant. Marcin Novotni Reinhard Klein University of Bonn Computer Graphics Group
3D Zernike Descriptors For N=22 : 155 floats as search key Timings (1.8 GHz Pentium): Voxelization: 0.3 – 10.0 sec / object Computation: 0.2 sec / object Retrieval (1814 objects): 0.3 sec Marcin Novotni Reinhard Klein University of Bonn Computer Graphics Group
3D Zernike Descriptors Retrieval performance [Novotni & Klein ’04] Slightly better than [Funkhouser et al. ’02] Object class dependent performance! Class dependent coefficient importance! Marcin Novotni Reinhard Klein University of Bonn Computer Graphics Group
3D Zernike Descriptors Faces Chairs Airplanes Importance Coeff No. Marcin Novotni Reinhard Klein University of Bonn Computer Graphics Group
3D Zernike Descriptors 3D Zernike functions [Canterakis ‘99] are polynomials such that are orthonormal within the unit ball Marcin Novotni Reinhard Klein University of Bonn Computer Graphics Group
3D Zernike Descriptors 3D Zernike functions [Canterakis ‘99] are polynomials such that are orthonormal within the unit ball 3D Zernike Moments: The 3D Zernike moments are defined as inner products of the object function with the elements of the basis. Marcin Novotni Reinhard Klein University of Bonn Computer Graphics Group
3D Zernike Descriptors 3D Zernike Descriptors: Amplitudes of the Zernike decomposition Rotation invariant And the zernike descriptors are defined similarly to the SH amplitudes: we gather the zernike moments with upper index from –l to l for a given lower indices n and l. Due to the properties of SH, the norms of these vectors will be rotation invariant. Marcin Novotni Reinhard Klein University of Bonn Computer Graphics Group
3D Zernike Descriptors For N=20 : 121 floats as search key Timings (1.8 GHz Pentium): Voxelization: 0.3 – 10.0 sec / object Computation: 0.2 sec / object Retrieval (1814 objects): 0.3 sec Marcin Novotni Reinhard Klein University of Bonn Computer Graphics Group
3D Zernike Descriptors Retrieval performance [Novotni & Klein ’04] Slightly better than [Funkhouser et al. ’02] Object class dependent performance! Class dependent coefficient importance! Marcin Novotni Reinhard Klein University of Bonn Computer Graphics Group
Correspondence Matching Matching should be: Independent of topology Robust Suitable for partial matching Marcin Novotni Reinhard Klein University of Bonn Computer Graphics Group
Correspondence Matching Local description Local shape histograms Not rotation invariant Rotation invariance Amplitudes of the Fourier Transform Marcin Novotni Reinhard Klein University of Bonn Computer Graphics Group
3D Zernike Descriptors 155 floats as search key Retrieval (1814 objects): 0.3 sec Marcin Novotni Reinhard Klein University of Bonn Computer Graphics Group
Correspondence Matching Stuff to remember: Salient points simplify the problem Smooth mapping iff consistent constellations Marcin Novotni Reinhard Klein University of Bonn Computer Graphics Group
Correspondence Matching Stuff to remember: Salient points simplify the problem Volumetric On the surface Marcin Novotni Reinhard Klein University of Bonn Computer Graphics Group
Correspondence Matching Stuff to remember: Salient points simplify the problem Smooth mapping iff consistent constellations Marcin Novotni Reinhard Klein University of Bonn Computer Graphics Group
Correspondence Matching New avenues: Local Descriptions for retrieval Retrieval by part selection & recognition Retrieval from large scenes Marcin Novotni Reinhard Klein University of Bonn Computer Graphics Group
Correspondence Matching New avenues: Local Descriptions for retrieval Online Learning for local descriptions Adopting pattern recognition methods Marcin Novotni Reinhard Klein University of Bonn Computer Graphics Group
Correspondence Matching New avenues: Local Descriptions for retrieval Online Learning for local descriptions Dense matching from salient points Morphing, registration, object statistics Marcin Novotni Reinhard Klein University of Bonn Computer Graphics Group
Our Aim #2 Direct matching Alignment Marcin Novotni Reinhard Klein University of Bonn Computer Graphics Group
Correspondence Matching Scale space extremes [Lindeberg ‘94] Blob detection by localizing extremes of Laplacian … … in scale and space Size of the blob Position of the blob Marcin Novotni Reinhard Klein University of Bonn Computer Graphics Group
Correspondence Matching Maxima of Laplacian over scales Marcin Novotni Reinhard Klein University of Bonn Computer Graphics Group
Correspondence Matching Spatial maxima Marcin Novotni Reinhard Klein University of Bonn Computer Graphics Group