Methods for 3D Shape Matching and Retrieval

Slides:



Advertisements
Similar presentations
Shape Matching and Object Recognition using Low Distortion Correspondence Alexander C. Berg, Tamara L. Berg, Jitendra Malik U.C. Berkeley.
Advertisements

Image Registration  Mapping of Evolution. Registration Goals Assume the correspondences are known Find such f() and g() such that the images are best.
Medical Image Registration Kumar Rajamani. Registration Spatial transform that maps points from one image to corresponding points in another image.
Presented by Xinyu Chang
TP14 - Local features: detection and description Computer Vision, FCUP, 2014 Miguel Coimbra Slides by Prof. Kristen Grauman.
The Pyramid Match Kernel: Discriminative Classification with Sets of Image Features Kristen Grauman Trevor Darrell MIT.
Chapter 8 Content-Based Image Retrieval. Query By Keyword: Some textual attributes (keywords) should be maintained for each image. The image can be indexed.
By: Bryan Bonvallet Nikolla Griffin Advisor: Dr. Jia Li
Xianfeng Gu, Yaling Wang, Tony Chan, Paul Thompson, Shing-Tung Yau
Matching with Invariant Features
Computer Vision Group University of California Berkeley Shape Matching and Object Recognition using Shape Contexts Jitendra Malik U.C. Berkeley (joint.
Robert Osada, Tom Funkhouser Bernard Chazelle, and David Dobkin Princeton University Matching 3D Models With Shape Distributions.
Lecture 6: Feature matching CS4670: Computer Vision Noah Snavely.
Iterative closest point algorithms
Reflective Symmetry Detection in 3 Dimensions
A Study of Approaches for Object Recognition
Lecture 4: Feature matching
3-D Object Recognition From Shape Salvador Ruiz Correa Department of Electrical Engineering.
Automatic Image Alignment (feature-based) : Computational Photography Alexei Efros, CMU, Fall 2005 with a lot of slides stolen from Steve Seitz and.
Video Google: Text Retrieval Approach to Object Matching in Videos Authors: Josef Sivic and Andrew Zisserman University of Oxford ICCV 2003.
Scale Invariant Feature Transform (SIFT)
CS4670: Computer Vision Kavita Bala Lecture 8: Scale invariance.
Spatio-chromatic image content descriptors and their analysis using Extreme Value theory Vasileios Zografos and Reiner Lenz
Content-based Image Retrieval (CBIR)
Overview Introduction to local features
Introduction --Classification Shape ContourRegion Structural Syntactic Graph Tree Model-driven Data-driven Perimeter Compactness Eccentricity.
Distinctive Image Features from Scale-Invariant Keypoints By David G. Lowe, University of British Columbia Presented by: Tim Havinga, Joël van Neerbos.
AdvisorStudent Dr. Jia Li Shaojun Liu Dept. of Computer Science and Engineering, Oakland University 3D Shape Classification Using Conformal Mapping In.
Final Exam Review CS485/685 Computer Vision Prof. Bebis.
1 Interest Operators Harris Corner Detector: the first and most basic interest operator Kadir Entropy Detector and its use in object recognition SIFT interest.
Recognition and Matching based on local invariant features Cordelia Schmid INRIA, Grenoble David Lowe Univ. of British Columbia.
TEMPLATE BASED SHAPE DESCRIPTOR Raif Rustamov Department of Mathematics and Computer Science Drew University, Madison, NJ, USA.
Shape Matching for Model Alignment 3D Scan Matching and Registration, Part I ICCV 2005 Short Course Michael Kazhdan Johns Hopkins University.
Overview Harris interest points Comparing interest points (SSD, ZNCC, SIFT) Scale & affine invariant interest points Evaluation and comparison of different.
Local invariant features Cordelia Schmid INRIA, Grenoble.
Shape Based Image Retrieval Using Fourier Descriptors Dengsheng Zhang and Guojun Lu Gippsland School of Computing and Information Technology Monash University.
Shape Analysis and Retrieval Statistical Shape Descriptors Notes courtesy of Funk et al., SIGGRAPH 2004.
Introduction EE 520: Image Analysis & Computer Vision.
Axial Flip Invariance and Fast Exhaustive Searching with Wavelets Matthew Bolitho.
Classifying Images with Visual/Textual Cues By Steven Kappes and Yan Cao.
Image Registration as an Optimization Problem. Overlaying two or more images of the same scene Image Registration.
Feature based deformable registration of neuroimages using interest point and feature selection Leonid Teverovskiy Center for Automated Learning and Discovery.
Lecture 7: Features Part 2 CS4670/5670: Computer Vision Noah Snavely.
Local invariant features Cordelia Schmid INRIA, Grenoble.
Local invariant features Cordelia Schmid INRIA, Grenoble.
Vision and SLAM Ingeniería de Sistemas Integrados Departamento de Tecnología Electrónica Universidad de Málaga (Spain) Acción Integrada –’Visual-based.
Overview Introduction to local features Harris interest points + SSD, ZNCC, SIFT Scale & affine invariant interest point detectors Evaluation and comparison.
Content-Based Image Retrieval QBIC Homepage The State Hermitage Museum db2www/qbicSearch.mac/qbic?selLang=English.
Features, Feature descriptors, Matching Jana Kosecka George Mason University.
CSE 185 Introduction to Computer Vision Feature Matching.
Local features: detection and description
CS654: Digital Image Analysis
Video Google: Text Retrieval Approach to Object Matching in Videos Authors: Josef Sivic and Andrew Zisserman University of Oxford ICCV 2003.
Finding Clusters within a Class to Improve Classification Accuracy Literature Survey Yong Jae Lee 3/6/08.
Lecture 07 13/12/2011 Shai Avidan הבהרה: החומר המחייב הוא החומר הנלמד בכיתה ולא זה המופיע / לא מופיע במצגת.
TP12 - Local features: detection and description
Video Google: Text Retrieval Approach to Object Matching in Videos
Local features: detection and description May 11th, 2017
Paper Presentation: Shape and Matching
Spectral Methods Tutorial 6 1 © Maks Ovsjanikov
Feature description and matching
Shape matching and object recognition using shape contexts
Aim of the project Take your image Submit it to the search engine
Brief Review of Recognition + Context
Video Google: Text Retrieval Approach to Object Matching in Videos
Feature descriptors and matching
Lecture 5: Feature invariance
Recognizing Deformable Shapes
Recognition and Matching based on local invariant features
Lecture 5: Feature invariance
Presentation transcript:

Methods for 3D Shape Matching and Retrieval Marcin Novotni & Reinhard Klein University of Bonn Computer Graphics Group

Our Aim #1 … , , , Given an example: Find the most similar object(s) in a database … , , , Marcin Novotni  Reinhard Klein University of Bonn  Computer Graphics Group

Motivation Lots of 3D archives: Search engines for data: WWW Proprietary databases ... Search engines for data: Text, 2D images, music (MIDI), … Emerging since 1998 for 3D Marcin Novotni  Reinhard Klein University of Bonn  Computer Graphics Group

Our Aim #2 Direct matching Alignment Establishing correspondences Marcin Novotni  Reinhard Klein University of Bonn  Computer Graphics Group

Motivation Partial matching/retrieval Marcin Novotni  Reinhard Klein University of Bonn  Computer Graphics Group

Motivation Partial matching/retrieval Statistical shape analysis Morphing Texture transfer Registration Marcin Novotni  Reinhard Klein University of Bonn  Computer Graphics Group

General Problem Abstract representation facilitating: identification of salient features of 3D objects description of features comparison (matching) Marcin Novotni  Reinhard Klein University of Bonn  Computer Graphics Group

Overview Matching for 3D Shape Retrieval Correspondence Matching Marcin Novotni  Reinhard Klein University of Bonn  Computer Graphics Group

Matching for 3D Shape Retrieval Marcin Novotni  Reinhard Klein University of Bonn  Computer Graphics Group

→ D( ) D : General Problem We need a Descriptor Marcin Novotni  Reinhard Klein University of Bonn  Computer Graphics Group

d( , ) d( , ) D( ) D( ) : = General Problem We need a Distance Measure Marcin Novotni  Reinhard Klein University of Bonn  Computer Graphics Group

d( , ) d( , ) d( , ) ≤ ≤ General Problem We need a Distance Measure : Close to (application driven) notion of resemblance Computationally cheap and robust d( , ) d( , ) d( , ) ≤ ≤ Marcin Novotni  Reinhard Klein University of Bonn  Computer Graphics Group

D( ) ≡ x1 xn 3D Zernike Descriptors Feature vectors Xi : 3D Zernike Descriptors [Canterakis ’99, Novotni & Klein ’03, ’04] Distance Measure: Euclidean Distance D( ) ≡ x1 xn Marcin Novotni  Reinhard Klein University of Bonn  Computer Graphics Group

3D Zernike Descriptors Retrieval performance [Novotni & Klein ‘03 ’04] Slightly better than [Funkhouser et al. ’02] Object class dependent performance! Class dependent coefficient importance! Marcin Novotni  Reinhard Klein University of Bonn  Computer Graphics Group

3D Zernike Descriptors Faces Chairs Airplanes Importance Coeff No. (Frequency) Marcin Novotni  Reinhard Klein University of Bonn  Computer Graphics Group

3D Zernike Descriptors Relevance feedback: Learning Machines: User selects relevant / irrelevant items Distance measure is tuned Learning Machines: SVM (Support vector machines) [Vapnik ‘95] One class SVM [Schölkopf et al. ’99] (K)BDA ((Kernel) Biased Discriminant Analysis) [Zhou et al. ‘01] Marcin Novotni  Reinhard Klein University of Bonn  Computer Graphics Group

Correspondence Matching Marcin Novotni  Reinhard Klein University of Bonn  Computer Graphics Group

Geometric Similarity Estimation Idea [Novotni & Klein 2001]: Definition of „geometric“ similarity in terms of a geometric distance Intuitive, simple, robust. Marcin Novotni  Reinhard Klein University of Bonn  Computer Graphics Group

Geometric Similarity Estimation Database objects example Normalized volumetric error 0.00 6.78 8.85 30.29 38.09 67.53 Marcin Novotni  Reinhard Klein University of Bonn  Computer Graphics Group

Geometric Similarity Estimation Classification by user set threshold Marcin Novotni  Reinhard Klein University of Bonn  Computer Graphics Group

Geometric Similarity Estimation Measures deformation magnitude Marcin Novotni  Reinhard Klein University of Bonn  Computer Graphics Group

Correspondence Matching ? Marcin Novotni  Reinhard Klein University of Bonn  Computer Graphics Group

Correspondence Matching ? Marcin Novotni  Reinhard Klein University of Bonn  Computer Graphics Group

Correspondence Matching ? Marcin Novotni  Reinhard Klein University of Bonn  Computer Graphics Group

Correspondence Matching ? Marcin Novotni  Reinhard Klein University of Bonn  Computer Graphics Group

Correspondence Matching Ideally: dense mapping ? Marcin Novotni  Reinhard Klein University of Bonn  Computer Graphics Group

Correspondence Matching Ideally: dense mapping Deformation by mapping semantics [D’Arcy Thompson 1917: On Growth and Form ] Marcin Novotni  Reinhard Klein University of Bonn  Computer Graphics Group

Correspondence Matching Ideally: dense mapping Easier: mapping salient points Curvature extremes Corners (Harris points in 2D) Etc… Scale space extremes Marcin Novotni  Reinhard Klein University of Bonn  Computer Graphics Group

Correspondence Matching Ideally: dense mapping Easier: mapping salient points Curvature extremes Corners (Harris points in 2D) Etc… Scale space extremes Marcin Novotni  Reinhard Klein University of Bonn  Computer Graphics Group

Correspondence Matching Scale Space extremes [Lindeberg ‘94] Marcin Novotni  Reinhard Klein University of Bonn  Computer Graphics Group

Correspondence Matching We have: Salient points Spatial position Size of local blobs How to match??? Marcin Novotni  Reinhard Klein University of Bonn  Computer Graphics Group

Correspondence Matching Criteria for correspondences: Similar Local geometries Constellations of points Marcin Novotni  Reinhard Klein University of Bonn  Computer Graphics Group

Correspondence Matching Criteria for correspondences: Similar Local geometries Constellations of points Marcin Novotni  Reinhard Klein University of Bonn  Computer Graphics Group

Correspondence Matching Local description Marcin Novotni  Reinhard Klein University of Bonn  Computer Graphics Group

Correspondence Matching Local description Marcin Novotni  Reinhard Klein University of Bonn  Computer Graphics Group

Correspondence Matching Assumption: Similar local descriptors Similar local geometries Marcin Novotni  Reinhard Klein University of Bonn  Computer Graphics Group

Correspondence Matching Criteria for correspondences: Similar Local geometries Constellations of points Marcin Novotni  Reinhard Klein University of Bonn  Computer Graphics Group

Correspondence Matching Similar constellations of points Smooth mappings leave constellations consistent Idea Constellations are consistent if mapping is smooth Marcin Novotni  Reinhard Klein University of Bonn  Computer Graphics Group

Correspondence Matching Marcin Novotni  Reinhard Klein University of Bonn  Computer Graphics Group

Correspondence Matching Marcin Novotni  Reinhard Klein University of Bonn  Computer Graphics Group

Correspondence Matching Marcin Novotni  Reinhard Klein University of Bonn  Computer Graphics Group

Correspondence Matching Marcin Novotni  Reinhard Klein University of Bonn  Computer Graphics Group

Correspondence Matching Marcin Novotni  Reinhard Klein University of Bonn  Computer Graphics Group

Correspondence Matching Similar constellations of points Idea: Constellations are consistent if mapping is smooth Thin Plate Spline interpolation [Brookstein ’89]  minimize: Total curvature Marcin Novotni  Reinhard Klein University of Bonn  Computer Graphics Group

Correspondence Matching  minimize: Minimizer (Thin Plate Spline interpolator): Affine part Nonlinear deformation Marcin Novotni  Reinhard Klein University of Bonn  Computer Graphics Group

Correspondence Matching  minimize: Minimizer (Thin Plate Spline interpolator): 2D Thin Plate Spline Marcin Novotni  Reinhard Klein University of Bonn  Computer Graphics Group

Correspondence Matching  minimize: Minimizer (Thin Plate Spline interpolator): Can be computed by a (N+4)x(N+4) matrix inversion Marcin Novotni  Reinhard Klein University of Bonn  Computer Graphics Group

Correspondence Matching Find (sub)sets of correspondences: Small local descriptor distances Small deformation energy Hierarchical pruning and clustering Using: Local descriptors Geometrical constellation consistency Marcin Novotni  Reinhard Klein University of Bonn  Computer Graphics Group

Correspondence Matching Marcin Novotni  Reinhard Klein University of Bonn  Computer Graphics Group

Correspondence Matching Marcin Novotni  Reinhard Klein University of Bonn  Computer Graphics Group

Correspondence Matching Marcin Novotni  Reinhard Klein University of Bonn  Computer Graphics Group

Correspondence Matching Marcin Novotni  Reinhard Klein University of Bonn  Computer Graphics Group

Correspondence Matching Marcin Novotni  Reinhard Klein University of Bonn  Computer Graphics Group

Correspondence Matching Marcin Novotni  Reinhard Klein University of Bonn  Computer Graphics Group

Correspondence Matching Marcin Novotni  Reinhard Klein University of Bonn  Computer Graphics Group

Correspondence Matching Marcin Novotni  Reinhard Klein University of Bonn  Computer Graphics Group

Correspondence Matching Marcin Novotni  Reinhard Klein University of Bonn  Computer Graphics Group

Correspondence Matching New avenues: Local Descriptions for retrieval Online Learning for local descriptions Dense matching from salient points Etc. Marcin Novotni  Reinhard Klein University of Bonn  Computer Graphics Group

Danke, DFG! Marcin Novotni  Reinhard Klein University of Bonn  Computer Graphics Group

3D Zernike Descriptors Basis functions in the unit sphere: SH on the sphere We use SH on the sphere to retain rotation invariance… Marcin Novotni  Reinhard Klein University of Bonn  Computer Graphics Group

3D Zernike Descriptors Basis functions in the unit sphere: SH on the sphere Function of the radius … and a radial function other than sampling. Since the radial function depends only on the radius, the rotation invariance is preserved. Rotation invariant! Marcin Novotni  Reinhard Klein University of Bonn  Computer Graphics Group

Object function, e.g. voxel grid 3D Zernike Descriptors Basis functions in the unit sphere: 3D Zernike Moments [Canterakis ‘99]: … and a radial function other than sampling. Since the radial function depends only on the radius, the rotation invariance is preserved. Object function, e.g. voxel grid Marcin Novotni  Reinhard Klein University of Bonn  Computer Graphics Group

3D Zernike Descriptors 3D Zernike Descriptors: Amplitudes of the Zernike decomposition Rotation invariant And the zernike descriptors are defined similarly to the SH amplitudes: we gather the zernike moments with upper index from –l to l for a given lower indices n and l. Due to the properties of SH, the norms of these vectors will be rotation invariant. Marcin Novotni  Reinhard Klein University of Bonn  Computer Graphics Group

3D Zernike Descriptors Basis functions in the unit sphere: SH on the sphere We use SH on the sphere to retain rotation invariance… Marcin Novotni  Reinhard Klein University of Bonn  Computer Graphics Group

3D Zernike Descriptors Basis functions in the unit sphere: SH on the sphere Function of the radius … and a radial function other than sampling. Since the radial function depends only on the radius, the rotation invariance is preserved. Rotation invariant! Marcin Novotni  Reinhard Klein University of Bonn  Computer Graphics Group

Object function, e.g. voxel grid 3D Zernike Descriptors Basis functions in the unit sphere: 3D Zernike Moments [Canterakis ‘99]: … and a radial function other than sampling. Since the radial function depends only on the radius, the rotation invariance is preserved. Object function, e.g. voxel grid Marcin Novotni  Reinhard Klein University of Bonn  Computer Graphics Group

3D Zernike Descriptors 3D Zernike Descriptors: Amplitudes of the Zernike decomposition Rotation invariant And the zernike descriptors are defined similarly to the SH amplitudes: we gather the zernike moments with upper index from –l to l for a given lower indices n and l. Due to the properties of SH, the norms of these vectors will be rotation invariant. Marcin Novotni  Reinhard Klein University of Bonn  Computer Graphics Group

3D Zernike Descriptors For N=22 : 155 floats as search key Timings (1.8 GHz Pentium): Voxelization: 0.3 – 10.0 sec / object Computation: 0.2 sec / object Retrieval (1814 objects): 0.3 sec Marcin Novotni  Reinhard Klein University of Bonn  Computer Graphics Group

3D Zernike Descriptors Retrieval performance [Novotni & Klein ’04] Slightly better than [Funkhouser et al. ’02] Object class dependent performance! Class dependent coefficient importance! Marcin Novotni  Reinhard Klein University of Bonn  Computer Graphics Group

3D Zernike Descriptors Faces Chairs Airplanes Importance Coeff No. Marcin Novotni  Reinhard Klein University of Bonn  Computer Graphics Group

3D Zernike Descriptors 3D Zernike functions [Canterakis ‘99] are polynomials such that are orthonormal within the unit ball Marcin Novotni  Reinhard Klein University of Bonn  Computer Graphics Group

3D Zernike Descriptors 3D Zernike functions [Canterakis ‘99] are polynomials such that are orthonormal within the unit ball 3D Zernike Moments: The 3D Zernike moments are defined as inner products of the object function with the elements of the basis. Marcin Novotni  Reinhard Klein University of Bonn  Computer Graphics Group

3D Zernike Descriptors 3D Zernike Descriptors: Amplitudes of the Zernike decomposition Rotation invariant And the zernike descriptors are defined similarly to the SH amplitudes: we gather the zernike moments with upper index from –l to l for a given lower indices n and l. Due to the properties of SH, the norms of these vectors will be rotation invariant. Marcin Novotni  Reinhard Klein University of Bonn  Computer Graphics Group

3D Zernike Descriptors For N=20 : 121 floats as search key Timings (1.8 GHz Pentium): Voxelization: 0.3 – 10.0 sec / object Computation: 0.2 sec / object Retrieval (1814 objects): 0.3 sec Marcin Novotni  Reinhard Klein University of Bonn  Computer Graphics Group

3D Zernike Descriptors Retrieval performance [Novotni & Klein ’04] Slightly better than [Funkhouser et al. ’02] Object class dependent performance! Class dependent coefficient importance! Marcin Novotni  Reinhard Klein University of Bonn  Computer Graphics Group

Correspondence Matching Matching should be: Independent of topology Robust Suitable for partial matching Marcin Novotni  Reinhard Klein University of Bonn  Computer Graphics Group

Correspondence Matching Local description Local shape histograms  Not rotation invariant Rotation invariance  Amplitudes of the Fourier Transform Marcin Novotni  Reinhard Klein University of Bonn  Computer Graphics Group

3D Zernike Descriptors 155 floats as search key Retrieval (1814 objects): 0.3 sec Marcin Novotni  Reinhard Klein University of Bonn  Computer Graphics Group

Correspondence Matching Stuff to remember: Salient points simplify the problem Smooth mapping iff consistent constellations Marcin Novotni  Reinhard Klein University of Bonn  Computer Graphics Group

Correspondence Matching Stuff to remember: Salient points simplify the problem Volumetric On the surface Marcin Novotni  Reinhard Klein University of Bonn  Computer Graphics Group

Correspondence Matching Stuff to remember: Salient points simplify the problem Smooth mapping iff consistent constellations Marcin Novotni  Reinhard Klein University of Bonn  Computer Graphics Group

Correspondence Matching New avenues: Local Descriptions for retrieval Retrieval by part selection & recognition Retrieval from large scenes Marcin Novotni  Reinhard Klein University of Bonn  Computer Graphics Group

Correspondence Matching New avenues: Local Descriptions for retrieval Online Learning for local descriptions Adopting pattern recognition methods Marcin Novotni  Reinhard Klein University of Bonn  Computer Graphics Group

Correspondence Matching New avenues: Local Descriptions for retrieval Online Learning for local descriptions Dense matching from salient points Morphing, registration, object statistics Marcin Novotni  Reinhard Klein University of Bonn  Computer Graphics Group

Our Aim #2 Direct matching Alignment Marcin Novotni  Reinhard Klein University of Bonn  Computer Graphics Group

Correspondence Matching Scale space extremes [Lindeberg ‘94] Blob detection by localizing extremes of Laplacian … … in scale and space Size of the blob Position of the blob Marcin Novotni  Reinhard Klein University of Bonn  Computer Graphics Group

Correspondence Matching Maxima of Laplacian over scales Marcin Novotni  Reinhard Klein University of Bonn  Computer Graphics Group

Correspondence Matching Spatial maxima Marcin Novotni  Reinhard Klein University of Bonn  Computer Graphics Group