GLSL I.

Slides:



Advertisements
Similar presentations
GLSL Basics Discussion Lecture for CS 418 Spring 2015 TA: Zhicheng Yan, Sushma S Kini, Mary Pietrowicz.
Advertisements

Informationsteknologi Wednesday, December 12, 2007Computer Graphics - Class 171 Today’s class OpenGL Shading Language.
MAT 594CM S10Fundamentals of Spatial ComputingAngus Forbes Week 5 : GLSL Shaders Topics: Shader syntax, passing textures into shaders, per-pixel lighting,
GLSL II Ed Angel Professor of Computer Science, Electrical and Computer Engineering, and Media Arts Director, Arts Technology Center University of New.
GLSL I May 28, 2007 (Adapted from Ed Angel’s lecture slides)
GLSL I Ed Angel Professor of Computer Science, Electrical and Computer Engineering, and Media Arts Director, Arts Technology Center University of New Mexico.
TA: Zhicheng Yan, Sushma S Kini, Mary Pietrowicz
Mohan Sridharan Based on slides created by Edward Angel GLSL I 1 CS4395: Computer Graphics.
Computer Science – Game DesignUC Santa Cruz Adapted from Jim Whitehead’s slides Shaders Feb 18, 2011 Creative Commons Attribution 3.0 (Except copyrighted.
REAL-TIME VOLUME GRAPHICS Christof Rezk Salama Computer Graphics and Multimedia Group, University of Siegen, Germany Eurographics 2006 Real-Time Volume.
Programmable Pipelines. Objectives Introduce programmable pipelines ­Vertex shaders ­Fragment shaders Introduce shading languages ­Needed to describe.
An Introduction to the OpenGL Shading Language Benj Lipchak Rob Simpson Bill Licea-Kane.
OpenGL Shading Language (Advanced Computer Graphics) Ernest Tatum.
Programmable Pipelines. 2 Objectives Introduce programmable pipelines ­Vertex shaders ­Fragment shaders Introduce shading languages ­Needed to describe.
Chris Kerkhoff Matthew Sullivan 10/16/2009.  Shaders are simple programs that describe the traits of either a vertex or a pixel.  Shaders replace a.
A Crash Course in HLSL Matt Christian.
CS 480/680 Computer Graphics Shader Applications Dr. Frederick C Harris, Jr. Fall 2011.
Real-Time High Quality Rendering CSE 291 [Winter 2015], Lecture 4 Brief Intro to Programmable Shaders
1 Introduction to Computer Graphics with WebGL Ed Angel Professor Emeritus of Computer Science Founding Director, Arts, Research, Technology and Science.
1 Introduction to Computer Graphics with WebGL Ed Angel Professor Emeritus of Computer Science Founding Director, Arts, Research, Technology and Science.
Programmable Pipelines Ed Angel Professor of Computer Science, Electrical and Computer Engineering, and Media Arts Director, Arts Technology Center University.
OpenGL Shader Language Vertex and Fragment Shading Programs.
1 Introduction to Computer Graphics with WebGL Ed Angel Professor Emeritus of Computer Science Founding Director, Arts, Research, Technology and Science.
Shader Applications Ed Angel Professor Emeritus of Computer Science University of New Mexico 1 E. Angel and D. Shreiner: Interactive Computer Graphics.
Shaders in OpenGL Marshall Hahn. Introduction to Shaders in OpenGL In this talk, the basics of OpenGL Shading Language will be covered. This includes.
CS418 Computer Graphics John C. Hart
Shading in OpenGL Ed Angel Professor Emeritus of Computer Science University of New Mexico 1 E. Angel and D. Shreiner: Interactive Computer Graphics 6E.
OpenGL Shading Language (GLSL)
CSE 381 – Advanced Game Programming GLSL. Rendering Revisited.
OpenGL Shading Language (GLSL)
GLSL II.
GLSL II Ed Angel Professor of Computer Science, Electrical and Computer Engineering, and Media Arts Director, Arts Technology Center University of New.
Week 3 Lecture 4: Part 2: GLSL I Based on Interactive Computer Graphics (Angel) - Chapter 9.
1 E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012 Programming with OpenGL Ed Angel Professor Emeritus of Computer Science.
Programmable Pipelines. 2 Angel: Interactive Computer Graphics 5E © Addison-Wesley 2009 Black Box View Geometry Processor Frame Buffer Fragment Processor.
CS 480/680 Computer Graphics Programming with Open GL Part 5: Putting it all together Dr. Frederick C Harris, Jr. Fall 2011.
Programming with OpenGL Part 5: More GLSL Isaac Gang University of Mary Hardin-Baylor E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley.
What are shaders? In the field of computer graphics, a shader is a computer program that runs on the graphics processing unit(GPU) and is used to do shading.
OpenGL Shading Language
Programming with OpenGL Part 3: Shaders Ed Angel Professor of Emeritus of Computer Science University of New Mexico 1 E. Angel and D. Shreiner: Interactive.
OpenGl Shaders Lighthouse3d.com.
GLSL I.  Fixed vs. Programmable  HW fixed function pipeline ▪ Faster ▪ Limited  New programmable hardware ▪ Many effects become possible. ▪ Global.
Advanced Texture Mapping Bump Mapping & Environment Mapping (Reflection)
GLSL II Ed Angel Professor of Computer Science, Electrical and Computer Engineering, and Media Arts Director, Arts Technology Center University of New.
An Introduction to the Cg Shading Language Marco Leon Brandeis University Computer Science Department.
COMP 175 | COMPUTER GRAPHICS Remco Chang1/XX13 – GLSL Lecture 13: OpenGL Shading Language (GLSL) COMP 175: Computer Graphics April 12, 2016.
Introduction to Computer Graphics with WebGL
Shader.
Programmable Pipelines
CSE Real Time Rendering
GLSL II Ed Angel Professor of Computer Science, Electrical and Computer Engineering, and Media Arts Director, Arts Technology Center University of New.
Carl Johan Gribel, PhD student
Objectives Simple Shaders Programming shaders with GLSL
GLSL I Ed Angel Professor of Computer Science, Electrical and Computer Engineering, and Media Arts Director, Arts Technology Center University of New Mexico.
Introduction to Computer Graphics with WebGL
Day 05 Shader Basics.
Chapter VI OpenGL ES and Shader
Programming with OpenGL
Introduction to Computer Graphics with WebGL
ICG 2018 Fall Homework1 Guidance
Programming with OpenGL Part 3: Shaders
Programming with OpenGL Part 5: More GLSL
CIS 441/541: Introduction to Computer Graphics Lecture 15: shaders
Programming with OpenGL Part 5: More GLSL
CS 480/680 Computer Graphics GLSL Overview.
Language Definitions Chap. 3 of Orange Book.
CS 480/680 Part 1: Model Loading.
Introduction to Computer Graphics with WebGL
Programmable Pipelines
CS 480/680 Fall 2011 Dr. Frederick C Harris, Jr. Computer Graphics
Presentation transcript:

GLSL I

Why Shaders? Make the Graphics Effects Possible & Real-time !! Fixed vs. Programmable HW fixed function pipeline Faster Limited New programmable hardware Many effects become possible. Global illumination effects Ray tracing. … Subsurface scattering composing Make the Graphics Effects Possible & Real-time !! 1. Fixed function pipeline: some control through use of special flags, extensions, 2. Use pixel shader do Phong shading Refraction/ reflection Multiple Normal Map

Shaders’ Applications Vertex Shader Skinning Mesh Tessellation Terrain Generation Geometry Shader Surface details Fragment Shader Advance shading Just show the application effects

Three Major Parts when Learning Shader Language The language itself. Runtime environment How to co-work with OpenGL/D3D Architecture The role of the shaders.

History of Shading Language 1. Real-time -- OpenGL vs DirectX Offline -- RenderMan Programmable Language - ASM (Nvidia 2000), CG(2002, Nvidia) From C/C++ Vertex/fragment in opengl 2002 HLSL, (2002, M$) GLSL 2003 GPGPU applications ( ~2005) Uniform Shaders Direct Computing 1. CUDA 2008 2. OpenCL 5.

History of Shading Language 2000 Asambly, (nVidia) 2002 CG 1.0 (nVidia) C for graphcis Vertex/fragment extension (OpenGL ) HLSL (High Level Shading Language, M$) 2003 GLSL (OpenGL) 2004 GPGPU Applications Uniform GPU architecture for both VS and FS, (ATI) 2008 Direct Computing, CUDA, 2009 OpenCL

History of Shading Language Currently 3 major shading languages - Cg (Nvidia) - HLSL (Microsoft) Derived from Cg - GLSL (OpenGL) Main influences are - C language - Pre-existing Shading languages developed in university and industry.

GLSL Version 1.1+ 1.5+ 4.0 Vertex/Fragment Shader Geometry Shader Tessellation Shader OpenGL Version GLSL Version OpenGL 4.0 GLSL 4.0 OpenGL 3.3 GLSL 3.3 OpenGL 3.2 GLSL 1.5 OpenGL 3.1 GLSL 1.4 OpenGL 3.0 GLSL 1.3 OpenGL 2.1 GLSL 1.2 OpenGL 2.0 GLSL 1.1

3D Graphics Pipeline Review 3D model Screen Vertices Pixels Color Pixels Pixel Op. Transform & Lighting Rasterizer Scene Setting

Vertex Shader Applications Moving vertices Morphing Wave motion Fractals Lighting More realistic models Cartoon shaders Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005

Fragment Shader Applications Per fragment lighting calculations per vertex lighting per fragment lighting Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005

Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005 GLSL OpenGL Shading Language Part of OpenGL 2.0 High level C-like language New data types Matrices Vectors Samplers OpenGL state available through built-in variables Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005

Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005 Simple Vertex Shader const vec4 red = vec4(1.0, 0.0, 0.0, 1.0); void main(void) { gl_Position = gl_ProjectionMatrix *gl_ModelViewMatrix*gl_Vertex; gl_FrontColor = red; } Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005

Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005 Execution Model Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005

Simple Fragment Program void main(void) { gl_FragColor = gl_FrontColor; } Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005

Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005 Execution Model Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005

Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005 Data Types C types: int, float, bool Vectors: float vec2, vec 3, vec4 Also int (ivec) and boolean (bvec) Matrices: mat2, mat3, mat4 Stored by columns Standard referencing m[row][column] C++ style constructors vec3 a =vec3(1.0, 2.0, 3.0) vec2 b = vec2(a) Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005

Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005 Pointers There are no pointers in GLSL We can use C structs which can be copied back from functions Because matrices and vectors are basic types they can be passed into and output from GLSL functions, e.g. matrix3 func(matrix3 a) Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005

Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005 Qualifiers GLSL has many of the same qualifiers such as const as C/C++ Need others due to the nature of the execution model Variables can change Once per primitive Once per vertex Once per fragment At any time in the application Vertex attributes are interpolated by the rasterizer into fragment attributes Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005

Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005 Attribute Qualifier Attribute-qualified variables can change at most once per vertex Cannot be used in fragment shaders Built in (OpenGL state variables) gl_Color gl_ModelViewMatrix User defined (in application program) attribute float temperature attribute vec3 velocity Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005

Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005 Uniform Qualified Variables that are constant for an entire primitive Can be changed in application outside scope of glBegin and glEnd Cannot be changed in shader Used to pass information to shader such as the bounding box of a primitive Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005

Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005 Varying Qualified Variables that are passed from vertex shader to fragment shader Automatically interpolated by the rasterizer Built in Vertex colors Texture coordinates User defined Requires a user defined fragment shader Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005

Example: Vertex Shader const vec4 red = vec4(1.0, 0.0, 0.0, 1.0); varying vec3 color_out; void main(void) { gl_Position = gl_ModelViewProjectionMatrix*gl_Vertex; color_out = red; } Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005

Required Fragment Shader varying vec3 color_out; void main(void) { gl_FragColor = color_out; } Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005

A Quick Review What are the qualifier (attribute, uniform, varying) for the following cases? If variables change… Once per primitive  (uniform? attribute?...) Once per vertex  ? Once per fragment  ? Vertex attributes are interpolated by the rasterizer into fragment attributes

Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005 Passing values call by value-return Variables are copied in Returned values are copied back Three possibilities in out inout Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005

Operators and Functions Standard C functions Trigonometric Arithmetic Normalize, reflect, length Overloading of vector and matrix types mat4 a; vec4 b, c, d; c = b*a; // a column vector stored as a 1d array d = a*b; // a row vector stored as a 1d array Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005

Swizzling and Selection Can refer to array elements by element using [] or selection (.) operator with x, y, z, w r, g, b, a s, t, p, q a[2], a.b, a.z, a.p are the same Swizzling operator lets us manipulate components vec4 a; a.yz = vec2(1.0, 2.0); Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005

For More Information… Tutorials available online (see the course webpage, Reference section) At www.Lighthouse3D.com At www.OpenGL.org

(Adapted from Ed Angel’s lecture slides) GLSL II (Adapted from Ed Angel’s lecture slides)

Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005 Objectives Coupling GLSL to Applications Example applications Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005

Linking Shaders to OpenGL OpenGL Extensions ARB_shader_objects ARB_vertex_shader ARB_fragment_shader OpenGL 2.0 Almost identical to using extensions Avoids extension suffixes on function names Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005

Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005 Program Object Container for shaders Can contain multiple shaders Other GLSL functions GLuint myProgObj; myProgObj = glCreateProgram(); /* define shader objects here */ glUseProgram(myProgObj); glLinkProgram(myProgObj); Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005

Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005 Reading a Shader Shader are added to the program object and compiled Usual method of passing a shader is as a null-terminated string using the function glShaderSource If the shader is in a file, we can write a reader to convert the file to a string Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005

Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005 Shader Reader char* readShaderSource(const char* shaderFile) { struct stat statBuf; FILE* fp = fopen(shaderFile, "r"); char* buf; stat(shaderFile, &statBuf); buf = (char*) malloc(statBuf.st_size + 1 * sizeof(char)); fread(buf, 1, statBuf.st_size, fp); buf[statBuf.st_size] = '\0'; fclose(fp); return buf; } Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005

Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005 Adding a Vertex Shader GLint vShader; GLunit myVertexObj; GLchar vShaderfile[] = “my_vertex_shader”; GLchar* vSource = readShaderSource(vShaderFile); glShaderSource(myVertexObj, 1, &vSource, NULL); myVertexObj = glCreateShader(GL_VERTEX_SHADER); glCompileShader(myVertexObj); glAttachObject(myProgObj, myVertexObj); Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005

Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005 Vertex Attributes Vertex attributes are named in the shaders Linker forms a table Application can get index from table and tie it to an application variable Similar process for uniform variables Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005

Vertex Attribute Example In C/C++ application GLint colorAttr; colorAttr = glGetAttribLocation(myProgObj, "myColor"); /* myColor is name in shader */ GLfloat color[4]; glVertexAttrib4fv(colorAttr, color); /* color is variable in application */ The original slide incorrectly uses: glVertexAttrib4fv(colorAttrib, color); Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005

Uniform Variable Example In C/C++ application GLint angleParam; angleParam = glGetUniformLocation(myProgObj, "angle"); /* angle defined in shader */ /* my_angle set in application */ GLfloat my_angle; my_angle = 5.0 /* or some other value */ glUniform1f(angleParam, my_angle); The original slide incorrectly uses: glUniform1f(myProgObj, angleParam, my_angle); Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005

Vertex Shader Applications Moving vertices Morphing Wave motion Fractals Lighting More realistic models Cartoon shaders Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005

Wave Motion Vertex Shader In GLSL shader uniform float time; uniform float xs, zs; void main() { float s; s = 1.0 + 0.1*sin(xs*time)*sin(zs*time); gl_Vertex.y = s*gl_Vertex.y; gl_Position = gl_ModelViewProjectionMatrix*gl_Vertex; } Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005

Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005 Particle System uniform vec3 init_vel; uniform float g, m, t; void main() { vec3 object_pos; object_pos.x = gl_Vertex.x + vel.x*t; object_pos.y = gl_Vertex.y + vel.y*t + g/(2.0*m)*t*t; object_pos.z = gl_Vertex.z + vel.z*t; gl_Position = gl_ModelViewProjectionMatrix* vec4(object_pos,1); } In GLSL shader Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005

Modified Phong Vertex Shader I In GLSL shader void main(void) /* modified Phong vertex shader (without distance term) */ { float f; /* compute normalized normal, light vector, view vector, half-angle vector in eye cordinates */ vec3 norm = normalize(gl_NormalMatrix*gl_Normal); vec3 lightv = normalize(gl_LightSource[0].position -gl_ModelViewMatrix*gl_Vertex); vec3 viewv = -normalize(gl_ModelViewMatrix*gl_Vertex); vec3 halfv = normalize(lightv + norm); if(dot(lightv, norm) > 0.0) f = 1.0; else f = 0.0; Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005

Modified Phong Vertex Shader II In GLSL shader /* compute diffuse, ambient, and specular contributions */ vec4 diffuse = max(0, dot(lightv, norm))*gl_FrontMaterial.diffuse *LightSource[0].diffuse; vec4 ambient = gl_FrontMaterial.ambient*LightSource[0].ambient; vec4 specular = f*gl_FrontMaterial.specular* gl_LightSource[0].specular) *pow(max(0, dot( norm, halfv)), gl_FrontMaterial.shininess); vec3 color = vec3(ambient + diffuse + specular) gl_FrontColor = vec4(color, 1); gl_Position = gl_ModelViewProjectionMatrix*gl_Vertex; } Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005

Pass Through Fragment Shader In GLSL shader /* pass-through fragment shader */ void main(void) { gl_FragColor = gl_FrontColor; } Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005

Vertex Shader for per Fragment Lighting In GLSL shader /* vertex shader for per-fragment Phong shading */ varying vec3 normale; varying vec4 positione; void main() { normale = gl_NormalMatrixMatrix*gl_Normal; positione = gl_ModelViewMatrix*gl_Vertex; gl_Position = gl_ModelViewProjectionMatrix*gl_Vertex; } Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005

Fragment Shader for Modified Phong Lighting I In GLSL shader varying vec3 normale; varying vec4 positione; void main() { vec3 norm = normalize(normale); vec3 lightv = normalize(gl_LightSource[0].position-positione.xyz); vec3 viewv = normalize(positione); vec3 halfv = normalize(lightv + viewv); vec4 diffuse = max(0, dot(lightv, viewv)) *gl_FrontMaterial.diffuse*gl_LightSource[0].diffuse; vec4 ambient = gl_FrontMaterial.ambient*gl_LightSource[0].ambient; Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005

Fragment Shader for Modified Phong Lighting II int f; if(dot(lightv, viewv)> 0.0) f =1.0); else f = 0.0; vec3 specular = f*pow(max(0, dot(norm, halfv), gl_FrontMaterial.shininess) *gl_FrontMaterial.specular*gl_LightSource[0].specular); vec3 color = vec3(ambient + diffuse + specular); gl_FragColor = vec4(color, 1.0); } In GLSL shader Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005

Vertex vs Fragment Shader per vertex lighting per fragment lighting Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005

Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005 Samplers Provides access to a texture object Defined for 1, 2, and 3 dimensional textures and for cube maps In shader: uniform sampler2D myTexture; vec2 texcoord; vec4 texcolor = texture2D(mytexture, texcoord); In application: texMapLocation = glGetUniformLocation(myProg,“myTexture”); glUniform1i(texMapLocation, 0); /* assigns to texture unit 0 */ Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005

Fragment Shader Applications Texture mapping smooth shading environment mapping bump mapping Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005

Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005 Cube Maps We can form a cube map texture by defining six 2D texture maps that correspond to the sides of a box Supported by OpenGL Also supported in GLSL through cubemap sampler vec4 texColor = textureCube(mycube, texcoord); Texture coordinates must be 3D Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005

Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005 Environment Map Use reflection vector to locate texture in cube map Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005

Environment Maps with Shaders Environment map usually computed in world coordinates which can differ from object coordinates because of modeling matrix May have to keep track of modeling matrix and pass it shader as a uniform variable Can also use reflection map or refraction map (for example to simulate water) Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005

Environment Map Vertex Shader Varying vec3 reflectw; uniform mat4 modelMat; uniform mat3 invModelMat; uniform vec4 eyew; void main(void) { vec4 positionw = modelMat*gl_Vertex; vec3 normw = normalize(gl_Normal*invModelMat.xyz); vec3 lightw = normalize(eyew.xyz-positionw.xyz); eyew = reflect(normw, eyew); gl_Position = gl_ModelViewProjectionMatrix*gl_Vertex; } Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005

Environment Map Fragment Shader /* fragment shader for reflection map */ varying vec3 reflectw; uniform samplerCube MyMap; void main(void) { gl_FragColor = textureCube(myMap, reflectw); } Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005

Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005 Bump Mapping Perturb normal for each fragment Store perturbation as textures Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005