Janyce Franc-09.06.091 Effect of Laguerre Gauss modes on thermal noise Janyce Franc, Raffaele Flaminio, Nazario Morgado, Simon Chelkowski, Andreas Freise,

Slides:



Advertisements
Similar presentations
Gravitational Wave Astronomy Dr. Giles Hammond Institute for Gravitational Research SUPA, University of Glasgow Universität Jena, August 2010.
Advertisements

1 Test Mass Suspensions for AIGO Ben Lee The University of Western Australia.
November 29-30, 2001 LIGO-G Z Talk at PAC-11, LHO 1 Proposal Thermal and Thermoelastic Noise Research for Advanced LIGO Optics Norio Nakagawa.
Harald Lück, AEI Hannover 1 GWADW- May, 10-15, 2009 EU contract #
ET – THE Einstein telescope INSTRUMENTAL ASPECTS
Stefan Hild and Andreas Freise University of Birmingham Advanced Virgo telecon, June 2008 Beam sizes and mirror curvatures for Advanced Virgo.
1st ET General meeting, Pisa, November 2008 The ET sensitivity curve with ‘conventional‘ techniques Stefan Hild and Andreas Freise University of Birmingham.
Stefan Hild, Andreas Freise, Simon Chelkowski University of Birmingham Roland Schilling, Jerome Degallaix AEI Hannover Maddalena Mantovani EGO, Cascina.
Stefan Hild, Andreas Freise, Simon Chelkowski University of Birmingham Roland Schilling, Jerome Degallaix AEI Hannover Maddalena Mantovani EGO, Cascina.
Alban REMILLIEUX3 rd ILIAS-GW Annual General Meeting. London, October 26 th -27 th, New coatings on new substrates for low mechanical loss mirrors.
1 Kazuhiro Yamamoto Istituto Nazionale di Fisica Nucleare Sezione di Padova Substrate thermoelastic noise and thermo-optic noise at low temperature in.
Einstein gravitational wave Telescope Next steps: from technology reviews to detector design Andreas Freise for the ET WG3 working group , 2nd.
Optical Configuration Advanced Virgo Review Andreas Freise for the OSD subsystem.
STREGA WP1/M1 mirror substrates GEO LIGO ISA Scientific motivation: Mechanical dissipation from dielectric mirror coatings is predicted to be a significant.
Experimental test of higher-order LG modes in the 10m Glasgow prototype interferometer B. Sorazu, P. Fulda, B. Barr, A. Bell, C. Bond, L. Carbone, A. Freise,
1 The Status of Melody: An Interferometer Simulation Program Amber Bullington Stanford University Optics Working Group March 17, 2004 G D.
A. Bunkowski Nano-structured Optics for GW Detectors 1 A.Bunkowski, O. Burmeister, D. Friedrich, K. Danzmann, and R. Schnabel in collaboration with T.
Thermal noise from optical coatings Gregory Harry Massachusetts Institute of Technology - on behalf of the LIGO Science Collaboration - 25 July
Nawrodt 23/03/2011 Experimental Approaches for the Einstein Telescope Ronny Nawrodt on behalf of the Einstein Telescope Science Team and the ET DS Writing.
Topology comparison RSE vs. SAGNAC using GWINC S. Chelkowski, H. Müller-Ebhardt, S. Hild 21/09/2009 S. ChelkowskiSlide 1ET Workshop, Erice, 10/2009.
DFG-NSF Astrophysics Workshop Jun 2007 G Z 1 Optics for Interferometers for Ground-based Detectors David Reitze Physics Department University.
Lisbon, 8 January Research and Development for Gravitational Wave Detectors Raffaele Flaminio CNRS/LMA Lyon.
Advanced Virgo Optical Configuration ILIAS-GW, Tübingen Andreas Freise - Conceptual Design -
1 Kazuhiro Yamamoto Institute for Cosmic Ray Research, the University of Tokyo Cryogenic mirrors: the state of the art in interferometeric gravitational.
1 Thermal noise and high order Laguerre-Gauss modes J-Y. Vinet, B. Mours, E. Tournefier GWADW meeting, Isola d’Elba May 27 th – Jun 2 nd, 2006.
Beams of the Future Mihai Bondarescu, Oleg Kogan, Yanbei Chen, Andrew Lundgreen, Ruxandra Bondarescu, David Tsang A Caltech - AEI - Cornell Collaboration.
LIGO LaboratoryLIGO-G R Coatings and Their Influence on Thermal Lensing and Compensation in LIGO Phil Willems Coating Workshop, March 21, 2008,
S. ChelkowskiSlide 1LSC Meeting, Amsterdam 09/2008.
Einstein gravitational wave Telescope Which optical topologies are suitable for ET? Andreas Freise for the ET WG3 working group MG12 Paris.
Experimental investigation of dynamic Photothermal Effect
Thermal Noise performance of advanced gravitational wave detector suspensions Alan Cumming, on behalf of the University of Glasgow Suspension Team 5 th.
Coating Program Update Gregory Harry LIGO/MIT on behalf of the Coating Working Group March 22, 2006 LSC Meeting – LHO G R.
1 Kazuhiro Yamamoto Max-Planck-Institut fuer Gravitationsphysik (Albert-Einstein-Institut) Institut fuer Gravitationsphysik, Leibniz Universitaet Hannover.
Thermoelastic dissipation in inhomogeneous media: loss measurements and thermal noise in coated test masses Sheila Rowan, Marty Fejer and LSC Coating collaboration.
Janyce Franc-Kyoto-GWADW1 Simulation and research for the future ET mirrors Janyce Franc, Nazario Morgado, Raffaele Flaminio Laboratoire des Matériaux.
Elba 2006 Suppressing Parametric Instabilities Li Ju, Slawek Gras, Pablo Barriga, Chonnong Zhao, Jerome Degallaix, David Blair, Yaohui Fan, Zewu Yan University.
Cryogenic Xylophone Kyoto May Kentaro Somiya Waseda Inst. for Adv. Study Collaboration work with S.Hild, K.Kokeyama, H.Mueller-Ebhardt, R.Nawrodt,
Equivalence relation between non spherical optical cavities and application to advanced G.W. interferometers. Juri Agresti and Erika D’Ambrosio Aims of.
Laguerre-Gauss Modes for Future Gravitational Wave Detectors Keiko Kokeyama University of Birmingham 2 nd ET Annual Erice, Sicily, Italy
17/05/2010A. Rocchi - GWADW Kyoto2 Thermal effects: a brief introduction  In TM, optical power predominantly absorbed by the HR coating and converted.
Aspen Flat Beam Profile to Depress Thermal Noise J.Agresti, R. DeSalvo LIGO-G Z.
Optics related research for interferometric gravitational wave detectors S. Rowan for the Optics working group of the LIGO Scientific Collaboration SUPA,
Beams of the Future Mihai Bondarescu, Oleg Kogan, Yanbei Chen, Andrew Lundgreen, Ruxandra Bondarescu, David Tsang A Caltech - AEI - Cornell Collaboration.
LIGO-G Z Silicon as a low thermal noise test mass material S. Rowan, R. Route, M.M. Fejer, R.L. Byer Stanford University P. Sneddon, D. Crooks,
Heinert et al Properties of candidate materials for cryogenic mirrors 1 Properties of candidate materials for cryogenic mirrors D. Heinert,
LIGO-G Z 1 Report of the Optics Working Group to the LSC David Reitze University of Florida March 20, 2003.
1/16 Nawrodt, Genoa 09/2009 An overview on ET-WP2 activities in Glasgow R. Nawrodt, A. Cumming, W. Cunningham, J. Hough, I. Martin, S. Reid, S. Rowan ET-WP2.
WP2-WP3 Joint Meeting - Jena - March 1-3, Several different mechanisms contribute to the thermal noise of the mirror: Brownian (BR)(substrate, coating)
G. Cella I.N.F.N. Sezione di Pisa.  The mass density fluctuates..... ..... and the gravitational field will do the same Direct gravitational coupling.
Department of Physics & Astronomy Institute for Gravitational Research Scottish Universities Physics Alliance Brownian thermal noise associated with attachments.
1 Cascina – October 19, 2011 ASPERA Forum Laurent Pinard Substrates, Polishing, Coatings and Metrology for the 2 nd generation of GW detector Laurent PINARD.
Overview of the 20K configuration
Mechanical Loss in Silica substrates
Topology comparison RSE vs. SAGNAC using GWINC
Pros and cons of cryogenics for Einstein Telescope and Cosmic Explorer
Thermal noise calculations for cryogenic optics
Synopsis by Maria Ruiz-Gonzalez 12/8/16
Mirror thermal noises and its implications on the mirror design
Interferometric speed meter as a low-frequency gravitational-wave detector Helge Müller-Ebhardt Max-Planck-Institut für Gravitationsphysik (AEI) and Leibniz.
S. Rowan, M. Fejer, E. Gustafson, R. Route, G. Zeltzer
External forces from heat links in cryogenic suspensions
Thermal noise reduction through LG modes
Advanced LIGO Quantum noise everywhere
Flat-Top Beam Profile Cavity Prototype: design and preliminary tests
Test Mass Suspensions for AIGO
Thermal noise and high order Laguerre-Gauss modes J-Y. Vinet, B
3rd generation ITF sensitivity curve
Sensitivity curves beyond the Advanced detectors
The ET sensitivity curve with ‘conventional‘ techniques
Presentation transcript:

Janyce Franc Effect of Laguerre Gauss modes on thermal noise Janyce Franc, Raffaele Flaminio, Nazario Morgado, Simon Chelkowski, Andreas Freise, Stefan Hild WP3 meeting-Paris

Janyce Franc Contents 1.Motivations 2.Objectives and parameters values 3.Simulations : 1.Coating Brownian Noise 2.Substrate Brownian Noise 3.Substrate Thermo-elastic Noise 4.Conclusion on Laguerre-Gauss modes

Janyce Franc Motivations and objectives

Janyce Franc Thermal noise in future GW detectors The ideas to reduce thermal noise : -Arm lengths -New coating materials -Cooling cryogenic T° -Change beam mode and beam size All these noise sources are at least at some frequencies above the ET target Frequencies of interest : Hz

Janyce Franc LG00LG33 Advantages : Best power distribution on the mirror surface -Lower Thermal Noise -Lower Thermal Lensing Motivation for using LG modes The following simulations have been done in the framework of xylophone configuration (cf. R. Flaminio’s presentation). The idea is to prove the efficiency of the combination of cryogenic temperature and the use of Laguerre-Gauss modes to decrease the thermal noise for future GW detector.

Janyce Franc References J.-Y.Vinet : « Transverse Gaussian optical modes and thermal issues in advanced Gravitational Wave Interferometric detectors » to be published in « Living Reviews in General Relativity » M. L. Gorodetsky « thermal noises and noise compensation in high- reflection multilayer coating », Phys. Lett. A 372 (2008) Cerdonio et al. « Thermoelastic effects at low temperatures and quantum limits in displacement measurements » Phys. Review D, 63,

Janyce Franc Introduction CoatingsStandard : SiO 2 -Ta 2 O 5 (HL) 19 HLL : Transmission 4 ppm SubstrateSilicon Temperature10K Mirror dimensionDiameter : 62 cm Thickness : 30 cm Beam dimensions Ratio insuring 1 ppm diffraction losses versus order of the LG mode LG33 : w = a/4.3 = 7.2 cm LG00 : w=a/2.6 = 11.9 cm 2 cases consideredFinite and infinite mirror

Janyce Franc Parameters 10K SUBSTRATECOATING  s (K -1 ) σsσs  s (W.m -1.K -1 ) 2325 Cs (J.K -1.Kg -1 )  s (Kg.m -3 ) 2330 ss Ys (Pa)  L (K -1 )  H (K -1 ) σLσL0.159 σHσH0.23  L (W.m -1.K -1 ) 0.13  H (W.m -1.K -1 ) 0.4 CL (J.K -1.Kg -1 )4 CH (J.K -1.Kg -1 )3.17  L (Kg.m -3 ) 2200  H (Kg.m -3 ) 6850 nL nH2.06 YL (Pa) YH (Pa)

Janyce Franc Simulations

Janyce Franc Coating Brownian Noise No significant difference between finite and infinite mirror. The Coat. Brown. noise decreases with LG33. The Gorodetsky formula leads to a higher total thermal noise due to the more detailed and complicated formula. REDUCTION FACTORS (Vinet) Fini(LG00)/Fini(LG33)1.71 Infini(LG00)/Infini(LG33)1.62  SiO 2 =  Ta 2 O 5 =

Janyce Franc Substrate Brownian Noise Substrate Brown. Noise is reduced in a finite mirror AND decreases with a LG33 beam. REDUCTION FACTORS (Vinet) Fini(LG00)/Fini(LG33)1.97 Infini(LG00)/Infini(LG33)1.40

Janyce Franc Substrate Thermoelastic Noise with adiabatic assumption These curves take into account the adiabatic assumption. With this mirror dimension, there is no significant difference whatever the calculation of substrate thermoelastic noises : -LG33 or LG00 larger beam -Finite or infinite mirror REDUCTION FACTORS (Vinet) Fini(LG00)/Fini(LG33)1.02 Infini(LG00)/Infini(LG33)0.96

Janyce Franc The adiabatic limit at cryogenic temperature The thermo-elastic noise takes into account the adiabatic assumption. Temperature fluctuation stays homogeneous in time within the beam diameter 2w For T<80K (R.Nawrodt-WP2 meeting-February 2009) Silicon violates the adiabatic assumption [Cerdonio et al. 2001] For LG00 mode :

Janyce Franc Substrate Thermoelastic Noise without adiabatic assumption -Perfect superposition of the curves of finite and infinite mirrors -At low frequencies, a LG33 beam decreases the substrate thermoelastic noise. -At high frequencies, the thermal noise is the same with and without adiabatic assumption. REDUCTION FACTORS (From low to high frequencies) Fini(LG00)/Fini(LG33)2.10 (TBC) Infini(LG00)/Infini(LG33)1.99 (TBC) -1.00

Janyce Franc Summarize for finite mirror Laguerre-Gauss modes give promising results. All the thermal noises are reduced. For a 62 cm diameter and 30 cm thick mirror dimension, we obtain : Ratio LG00/LG33 for finite mirror Coat. Brown. Noise1.7 Sub. Brownian Noise1.97 Sub. TE high frequencies (TBC)

Janyce Franc Conclusion Reduction factor : 10K, with LG33 modes compare to gaussian beam the total thermal is reduced. Thermal Noise for 3rd generation GWD Long interferometer arms : 10 km Temperature : 10K Large beams : 12 cm (gaussian beam) and 7,2 cm (LG33 mode) T : 300K Arm length : 3 km Beam : 6 cm

Janyce Franc Thank you for your attention