Specifications for OMC telescope in AdVirgo R. Gouaty, E. Tournefier Estimation of carrier HOM power at the dark port Constraints on OMC waist and position.

Slides:



Advertisements
Similar presentations
Stefan Hild, Andreas Freise University of Birmingham Roland Schilling, Jerome Degallaix AEI Hannover January 2008, Virgo week, Pisa Advanced Virgo: Wedges.
Advertisements

Max-Planck-Institut für Gravitationsphysik (Albert-Einstein-Institut) HOMODYNE AND HETERODYNE READOUT OF A SIGNAL- RECYCLED GRAVITATIONAL WAVE DETECTOR.
19. October 2004 A. Freise Automatic Alignment using the Anderson Technique A. Freise European Gravitational Observatory Roma
Stefan Hild, M.Mantovani, A.Perreca and A. Freise Advanced Virgo meeting, August 2008 Automated simulations: choosing modulation frequencies à la Advanced.
Dual Recycling for GEO 600 Andreas Freise, Hartmut Grote Institut für Atom- und Molekülphysik Universität Hannover Max-Planck-Institut für Gravitationsphysik.
Hiro Yamamoto LLO April 3, 2014 LIGO-G Core Optics related loss hierarchy of aLIGO Hiro Yamamoto LIGO/Caltech Introduction Loss related to geometry.
Status of the Virgo Commissioning G.Losurdo – INFN Firenze/Urbino for the Virgo Collaboration.
Cascina, January 25th, Coupling of the IMC length noise into the recombined ITF output Raffaele Flaminio EGO and CNRS/IN2P3 Summary - Recombined.
Marcus Ng Mentor: Alan Weinstein Co-mentor: Robert Ward
Stefan Hild and A.Freise Advanced Virgo meeting, December 2008 Preliminary Thoughts on the optimal Arm Cavity Finesse of Advanced Virgo.
Optical simulation – March 04 1 Optical Simulation François BONDU VIRGO Tools Goals Example: tuning of modulation frequency A few questions.
VSR1 summary - post VSR1 Commissioning plans E. Tournefier (LAPP-CNRS) LSC-Virgo meeting Oct 22 nd, 2007.
Thermally Deformable Mirrors: a new Adaptive Optics scheme for Advanced Gravitational Wave Interferometers Marie Kasprzack Laboratoire de l’Accélérateur.
Stefan Hild, Andreas Freise, Simon Chelkowski University of Birmingham Roland Schilling, Jerome Degallaix AEI Hannover Maddalena Mantovani EGO, Cascina.
S.Hild and A.Freise January 2009 Warming up for the OSD workshop.
Stefan Hild, Andreas Freise, Simon Chelkowski University of Birmingham Roland Schilling, Jerome Degallaix AEI Hannover Maddalena Mantovani EGO, Cascina.
Virgo Control Noise Reduction
Design of Stable Power-Recycling Cavities University of Florida 10/05/2005 Volker Quetschke, Guido Mueller.
Optical Configuration Advanced Virgo Review Andreas Freise for the OSD subsystem.
Degeneracy for power-recycling and signal recycling cavities in Advanced Virgo.
Stefan Hild October 2007 LSC-Virgo meeting Hannover Interferometers with detuned arm cavaties.
Experimental test of higher-order LG modes in the 10m Glasgow prototype interferometer B. Sorazu, P. Fulda, B. Barr, A. Bell, C. Bond, L. Carbone, A. Freise,
GEO‘s experience with Signal Recycling Harald Lück Perugia,
Advanced VIRGO WG1: Status VIRGO, Cascina Andreas Freise University of Birmingham.
1 Noise sources at high frequency in Virgo E. Tournefier (LAPP-CNRS) ILAS WG1 meeting, Hannover December 12 th,2005 Recycled ITF sensitivities Noise sources.
1 Experiences and lessons learned from interferometer simulations at GEO GWADW, Andreas Freise for Hartmut Grote, Holger Wittel and the rest.
European Gravitational Observatory12/12/2005 WG1 Hannover 1 Mode Matching of the Fabry-Perrot cavities Julien Marque.
Thermal Compensation in Stable Recycling Cavity 21/03/2006 LSC Meeting 2006 UF LIGO Group Muzammil A. Arain.
LISA October 3, 2005 LISA Laser Interferometer Space Antenna Gravitational Physics Program Technical implications Jo van.
1 GEO Simulation Workshop, October 25 th 2007 M Laval The Virgo FFT code: DarkF Mikael Laval CNRS UMR 6162 ARTEMIS, Observatoire de la Côte d’Azur, Nice,
Advanced Virgo Optical Configuration ILIAS-GW, Tübingen Andreas Freise - Conceptual Design -
LSC-VIRGO joint meeting - Pisa1 Input mirrors thermal lensing effect Frequency modulation PRCL length in Virgo Some results from a Finesse simulation.
LIGO-G0200XX-00-M LIGO Scientific Collaboration1 First Results from the Mesa Beam Profile Cavity Prototype Marco Tarallo 26 July 2005 Caltech – LIGO Laboratory.
LSC-March  LIGO End to End simulation  Lock acquisition design »How to increase the threshold velocity under realistic condition »Hanford 2k simulation.
1 Advanced Virgo Workshop 14/06/2007 M Laval Fabry Perot cavity for LG and Flat modes Mikael Laval (OCA/ARTEMIS) Outlines: Tools: The optical simulation.
1 Thermal noise and high order Laguerre-Gauss modes J-Y. Vinet, B. Mours, E. Tournefier GWADW meeting, Isola d’Elba May 27 th – Jun 2 nd, 2006.
1 1.Definition 2.Deliverables 3.Status of preliminary design 4.Risks 5.Tasks to be done 6.Decisions to be taken 7.Required simulations 8.Planning ISC workshop:
1 The Virgo noise budget Romain Gouaty For the Virgo collaboration GWADW 2006, Isola d’Elba.
AIGO 2K Australia - Italy Workshop th October th October 2005 Pablo Barriga for AIGO group.
Chunnong Zhao for ACIGA
Nov 3, 2008 Detection System for AdV 1/8 Detection (DET) Subsystem for AdV  Main tasks and requirements for the subsystem  DC readout  Design for: the.
AdV Thermal Compensation System Viviana Fafone AdV/aLIGO joint technical meeting, February 4, 2004.
Dual Recycling in GEO 600 H. Grote, A. Freise, M. Malec for the GEO600 team Institut für Atom- und Molekülphysik University of Hannover Max-Planck-Institut.
Hiro Yamamoto GWADW Girdwood, Alaska LIGO-G Beam Splitter in aLIGO Hiro Yamamoto LIGO/Caltech BS02 to BS05? larger BS? BS in aLIGO IFO for.
The status of VIRGO Edwige Tournefier (LAPP-Annecy ) for the VIRGO Collaboration HEP2005, 21st- 27th July 2005 The VIRGO experiment and detection of.
Analysis of the Virgo runs sensitivities Raffaele Flaminio, Romain Gouaty, Edwige Tournefier Summary : - Introduction : goal of the study / Overview on.
Aligning Advanced Detectors L. Barsotti, M. Evans, P. Fritschel LIGO/MIT Understanding Detector Performance and Ground-Based Detector Designs LIGO-G
1 Development schedule of Static IFO Simulation (SIS) Basic building blocks »Framework »mirror, cavity or propagator, detector FP cavity »Simple locking,
17/05/2010A. Rocchi - GWADW Kyoto2 Thermal effects: a brief introduction  In TM, optical power predominantly absorbed by the HR coating and converted.
Advanced Virgo: Optical Simulation and Design Advanced Virgo review Andreas Freise for the OSD Subsystem.
Some Ideas on Coatingless all-reflective ITF Adalberto Giazotto & Giancarlo Cella INFN- Pisa.
1 DC readout for Virgo+? E. Tournefier WG1 meeting, Hannover January 23 rd,2007 DC vs AC readout: technical noises Output mode cleaner for DC readout.
Some considerations on radiative cooling V. Fafone, Y. Minenkov, I. Modena, A. Rocchi INFN Roma Tor Vergata.
Jean-Yves Vinet CNRS-ARTEMIS Observatoire de la Côte d’Azur Effects In cavity mirrors.
ILIAS - Geneve1 Input mirrors thermal lensing effect in Virgo J. Marque.
The VIRGO detection system
GEO Status and Prospects Harald Lück ILIAS / ETmeeting Cascina November 2008.
25/05/2007POSIPOL FOUR MIRRORS Fabry Perot resonator at LAL-Orsay Y. Fedala With help of F. Zomer, R.Cizeron.
Development of Phase Camera for Advanced Virgo (Experimental part) Kazuhiro Agatsuma Martin van Beuzekom, Mesfin Gebyehu, Laura van der Schaaf, Jo van.
Calva update Nicolas Leroy for the CALVA group (LAL, ESPCI, LAPP, LMA) Main Laser Cavity 1Cavity 2 Aux. Laser L1 L2 M1M2M3.
Current Status of Main Interferometer Design Yoichi Aso 2011/2/4, LCGT f2f Meeting.
Advanced Virgo: Optical Simulation and Design
Status report of Polarization RSE
Design of Stable Power-Recycling Cavities
Modeling of Advanced LIGO with Melody
Advanced Virgo Finesse Input File
Thermal lensing effect: Experimental measurements - Simulation with DarkF & Finesse J. Marque (Measurements analysis: M. Punturo; DarkF simulation: M.
Thermal noise and high order Laguerre-Gauss modes J-Y. Vinet, B
LIGO Scientific Collaboration
Homodyne detection: understanding the laser noise amplitude transfer function Jérôme Degallaix Ilias meeting – June 2007.
Presentation transcript:

Specifications for OMC telescope in AdVirgo R. Gouaty, E. Tournefier Estimation of carrier HOM power at the dark port Constraints on OMC waist and position of the waist OMC telescope in Virgo

12/05/20102 High Order Mode power at the dark port (1/4) Waist mismatch couples Laguerre-Gauss HOM into TEM 00 (resonant in OMC).  Constraints on OMC waist depends on HOM power at the dark port LMA simulation with differential thermal lensing in input mirror substrates: NDRC cavity (  gouy = 20°) – SRC zero tuning - FP cavities with Finesse = 880 Realistic focal lens: f 1 = 40 km / f 2 = 60 km FP cavities detuning:  L = m  Same power in HOMs and TEM 00 P HOM ≈ P 00 ≈ 0.1 W Simple analytical model: (underestimates total HOM power by a factor 4) HOM power varies with:- power recycling gain G rec for TEM00 - Signal recycling gain G SRC for LG mode - SR transmission

3 High Order Mode power at the dark port (2/4) What do we expect with FP finesse = 450 ?  New mirror transmissions - power recycling gain G rec for TEM00 - Signal recycling gain G SRC for LG mode - SR transmission x 2 (probably conservative in NDRC) x 2 ?

4 High Order Mode power at the dark port (3/4) Gain in SRC cavity with Finesse = 880 Gain in SRC cavity with Finesse = SRC zero tuning (TEM00 anti-resonant) At SRC zero tuning, G SRC (HOM) does not vary with FP finesse Analytical model

5 High Order Mode power at the dark port (4/4) What do we expect with FP finesse = 450 ?  New mirror transmissions - power recycling gain G rec for TEM00 - Signal recycling gain G SRC for LG mode - SR transmission x 2 ≈ cst  HOM power increases by a factor 4 For TEM 00: reduction of finesse compensates increase in G rec and T SR  Power does not change Conclusion (with FP finesse = 450): P HOM ≈ 4 x P 00

04/03/20106 Constraints on OMC waist (1/2) Waist of incident beam: w 0 +  w P HOM ≈ 0.4 W P 00 ≈ 0.1 W OMC waist: w 0 ≈ 236 μm Effect of a waist mismatch Coupling of HOMs to TEM 00 inside OMC  (  w/w 0 )² Contribution to Shot Noise < 1%  (  w/w 0 )² < 0.02 x (P 00 /P HOM ) Requirement on waist size   w < 17 μm

04/03/20107 Constraints on OMC waist (2/2) Effect of an error on the position of the waist:  z Incident beam: P HOM ≈ 0.4 W P 00 ≈ 0.1 W OMC waist: w 0 ≈ 236 μm Coupling of HOMs to TEM 00 inside OMC  (  z/kw 0 ²)² Contribution to Shot Noise < 1%  (  z/kw 0 ²)² < 0.02 x (P 00 /P HOM ) Requirement on waist position   z < 2.3 cm

04/03/20108 Effect of beam astigmatism Waist mismatch induced by astigmatism: VIR-0256A-10 (M. Granata): waists of PRM1 calculated for  gouy = 20°, incidence angle =0.9° w x = 2.0 mm w y = 2.5 mm   w/w 0 ≈ 25% At the entrance of OMC:  w ≈ 59 μm  Waist mismatch due to astigmatism might exceed the specifications! Error on waist position ?  z ≈ L PRM1-PRM2 (1/cos(  i ) – 1) ≈ 1.2 mm  Error on waist position due to beam astigmatism should be negligible.

04/03/20109 OMC Telescope in Virgo

04/03/ Virgo OMC bench Incoming beam (w=2 cm) L1, f = 2 m L3, f = 45 cm L2, f = 10 cm OMC (w=140 μm)

04/03/ Virgo OMC Telescope L1, f = 2m L2, f = 10cmL3, f = 45cm OMC w=2 cm w=1 mm Distance L1-L2: determines the size of the waist Position of L3: determines the position of the waist Tuning of waist size Tuning of waist position