Alexander Khalaidovski, Henning Vahlbruch, Hartmut Grote, Harald Lück, Benno Willke, Karsten Danzmann and Roman Schnabel STATUS OF THE GEO HF SQUEEZED.

Slides:



Advertisements
Similar presentations
Beyond The Standard Quantum Limit B. W. Barr Institute for Gravitational Research University of Glasgow.
Advertisements

Max-Planck-Institut für Gravitationsphysik (Albert-Einstein-Institut) HOMODYNE AND HETERODYNE READOUT OF A SIGNAL- RECYCLED GRAVITATIONAL WAVE DETECTOR.
Dual Recycling for GEO 600 Andreas Freise, Hartmut Grote Institut für Atom- und Molekülphysik Universität Hannover Max-Planck-Institut für Gravitationsphysik.
Albert-Einstein-Institute Hannover ET filter cavities for third generation detectors ET filter cavities for third generation detectors Keiko Kokeyama Andre.
G v1 H1 Squeezer Experiment Update L-V Meeting, Caltech, March 18, 2009 ANU, AEI, MIT, CIT and LHO Ping Koy Lam, Nergis Mavalvala, David McClelland,
Cascina, January 25th, Coupling of the IMC length noise into the recombined ITF output Raffaele Flaminio EGO and CNRS/IN2P3 Summary - Recombined.
G v1Squeezed Light Interferometry1 Squeezed Light Techniques for Gravitational Wave Detection July 6, 2012 Daniel Sigg LIGO Hanford Observatory.
Harald Lück, AEI Hannover 1 GWADW- May, 10-15, 2009 EU contract #
Koji Arai – LIGO Laboratory / Caltech LIGO-G v2.
Next generation nonclassical light sources for gravitational wave detectors Stefan Ast, Christoph Baune, Jan Gniesmer, Axel Schönbeck, Christina Vollmer,
Jan 29, 2007 LIGO Excomm, G R 1 Goal: Experimental Demonstration of a Squeezing-Enhanced Laser-Interferometric Gravitational Wave Detector in.
In our original plan we proposed to start the construction of the squeezer in Cascina starting from The design study of the squeezer is almost completed.
G v1 Squeezer Update Review August 25, 2009 H1 Squeezer Experiment ANU, AEI, MIT, CIT and LHO collaboration.
Power Stabilization of the 35W Reference System Frank Seifert, Patrick Kwee, Benno Willke, Karsten Danzmann Max-Planck-Institute for Gravitational Physics.
TeV Particle Astrophysics August 2006 Caltech Australian National University Universitat Hannover/AEI LIGO Scientific Collaboration MIT Corbitt, Goda,
Generation of squeezed states using radiation pressure effects David Ottaway – for Nergis Mavalvala Australia-Italy Workshop October 2005.
Recent Developments toward Sub-Quantum-Noise-Limited Gravitational-wave Interferometers Nergis Mavalvala Aspen January 2005 LIGO-G R.
GWADW 2010 in Kyoto, May 19, Development for Observation and Reduction of Radiation Pressure Noise T. Mori, S. Ballmer, K. Agatsuma, S. Sakata,
Interferometer Topologies and Prepared States of Light – Quantum Noise and Squeezing Convenor: Roman Schnabel.
Experiments towards beating quantum limits Stefan Goßler for the experimental team of The ANU Centre of Gravitational Physics.
Experimental Characterization of Frequency Dependent Squeezed Light R. Schnabel, S. Chelkowski, H. Vahlbruch, B. Hage, A. Franzen, N. Lastzka, and K. Danzmann.
March 17, 2008LSC-Virgo meeting1/12 Virgo Status B. Mours.
Generation and Control of Squeezed Light Fields R. Schnabel  S.  Chelkowski  A.  Franzen  B.  Hage  H.  Vahlbruch  N. Lastzka  M.  Mehmet.
SQL Related Experiments at the ANU Conor Mow-Lowry, G de Vine, K MacKenzie, B Sheard, Dr D Shaddock, Dr B Buchler, Dr M Gray, Dr PK Lam, Prof. David McClelland.
LSC 03/2005 LIGO-G Z S. Chelkowskicharacterization of squeezed states 1 Experimental characterization of frequency-dependent squeezed light Simon.
The AEI 10 m prototype interferometer Stefan Goßler for the 10 m prototype team DPG, March 2009.
GEO600 Detector Status Harald Lück Max-Planck Institut für Gravitationsphysik Institut für Atom- und Molekülphysik, Uni Hannover.
Squeezed light and GEO600 Simon Chelkowski LSC Meeting, Hannover.
Eighth Edoardo Amaldi Conference on Gravitational Waves Sheon Chua, Michael Stefszky, Conor Mow-Lowry, Daniel Shaddock, Ben Buchler, Kirk McKenzie, Sheila.
Advanced Virgo Optical Configuration ILIAS-GW, Tübingen Andreas Freise - Conceptual Design -
Quantum noise observation and control A. HeidmannM. PinardJ.-M. Courty P.-F. CohadonT. Briant O. Arcizet T. CaniardJ. Le Bars Laboratoire Kastler Brossel,
S. ChelkowskiSlide 1WG1 Meeting, Birmingham 07/2008.
Status of the Advanced LIGO PSL development LSC Virgo meeting, Caltech, March 2008 LIGO G Z Benno Willke for the PSL team.
Status of the Advanced LIGO PSL development LSC meeting, Baton Rouge March 2007 G Z Benno Willke for the PSL team.
Opto-mechanics with a 50 ng membrane Henning Kaufer, A. Sawadsky, R. Moghadas Nia, D.Friedrich, T. Westphal, K. Yamamoto and R. Schnabel GWADW 2012,
Dual Recycling in GEO 600 H. Grote, A. Freise, M. Malec for the GEO600 team Institut für Atom- und Molekülphysik University of Hannover Max-Planck-Institut.
SQL Related Experiments at the ANU Conor Mow-Lowry, G de Vine, K MacKenzie, B Sheard, Dr D Shaddock, Dr B Buchler, Dr M Gray, Dr PK Lam, Prof. David McClelland.
AIC, LSC / Virgo Collaboration Meeting, 2007, LLO Test-mass state preparation and entanglement in laser interferometers Helge Müller-Ebhardt, Henning Rehbein,
Ultra-stable, high-power laser systems Patrick Kwee on behalf of AEI Hannover and LZH Advanced detectors session, 26. March 2011 Albert-Einstein-Institut.
G D H1 Squeezer Experiment L-V Meeting, LAL Orsay, June 11, 2008 ANU, AEI, MIT, CIT and LHO Ping Koy Lam, Nergis Mavalvala, David McClelland,
GEO Status and Prospects Harald Lück ILIAS / ETmeeting Cascina November 2008.
Active Vibration Isolation using a Suspension Point Interferometer Youichi Aso Dept. Physics, University of Tokyo ASPEN Winter Conference on Gravitational.
QND, LSC / Virgo Collaboration Meeting, 2007, HannoverH. Müller-Ebhardt Entanglement between test masses Helge Müller-Ebhardt, Henning Rehbein, Kentaro.
Optomechanics Experiments
H1 Squeezing Experiment: the path to an Advanced Squeezer
Detuned Twin-Signal-Recycling
Squeezing in Gravitational Wave Detectors
Quantum noise reduction using squeezed states in LIGO
Roman Schnabel for the AEI-Division Karsten Danzmann
Overview of quantum noise suppression techniques
The Quantum Limit and Beyond in Gravitational Wave Detectors
Progress toward squeeze injection in Enhanced LIGO
Interferometric speed meter as a low-frequency gravitational-wave detector Helge Müller-Ebhardt Max-Planck-Institut für Gravitationsphysik (AEI) and Leibniz.
Nergis Mavalvala Aspen January 2005
Generation of squeezed states using radiation pressure effects
Homodyne readout of an interferometer with Signal Recycling
Quantum effects in Gravitational-wave Interferometers
Measuring Gravitational Waves with GEO600
Ponderomotive Squeezing Quantum Measurement Group
Australia-Italy Workshop October 2005
Advanced LIGO Quantum noise everywhere
Squeezed states in GW interferometers
GEO HF Limits/Goals/Options…
LIGO Quantum Schemes NSF Review, Oct
Squeezed Input Interferometer
A. Heidmann M. Pinard J.-M. Courty P.-F. Cohadon
Squeezed Light Techniques for Gravitational Wave Detection
Advanced Optical Sensing
Talk prepared by Stefan Hild AEI Hannover for the GEO-team
Presentation transcript:

Alexander Khalaidovski, Henning Vahlbruch, Hartmut Grote, Harald Lück, Benno Willke, Karsten Danzmann and Roman Schnabel STATUS OF THE GEO HF SQUEEZED LIGHT SOURCE LSC-Virgo March 2009 Meeting Pasadena, March 18th 2009 AEI Hannover LIGO-G

1 IN A NUTSHELL

EXPERIMENTAL LAYOUT SCHEME I 2 2-COLOR LASER

EXPERIMENTAL LAYOUT SCHEME I 3

SECOND HARMONIC GENERATOR 4 Hemilithic cavity Nonlinear medium: Singly resonant at 1064 nm Coupling mirror: R = 90% Compact design mm PPKTP crystal  Finesse ≈ 60 High intrinsic mechanical x x stability

SHG/SQUEEZER DESIGN 5

EFFICIENT SHG 6

7 inferred conversion efficiency > 90%

EFFICIENT SHG 8 inferred conversion efficiency > 90% PRELIMINARY

EXPERIMENTAL LAYOUT SCHEME II 9

EXPERIMENTAL LAYOUT SCHEME III 10

EXPERIMENTAL LAYOUT SCHEME IV 11

EXPERIMENTAL LAYOUT SCHEME V 12

GEO SQUEEZING BREADBOARD Breadboard: 113x135 cm Main Laser: InnoLight Mephisto > 120 opt. components Aux. Lasers: Mephisto OEM total weight ≈ 120 kg 13 Optics: ATF (superpolished) Nonlinear medium: PPKTP Beam height: 50mm Compact design

STATUS OF THE EXPERIMENT I 14

STATUS OF THE EXPERIMENT II 15

STATUS OF THE EXPERIMENT II 16

STATUS OF THE EXPERIMENT II 17

STATUS OF THE EXPERIMENT II 18

ELECTRONIC CONTROL Analog electronics for high Digitally interfaced Real time LINUX Operation in bandwidth control loops control system (EPICS) 24 h/day, 7 days/week self- relocking mode 19

TIMELINE AND SUMMARY Assembling started! Squeezed light injection TIMELINE Spring/Summer 2009 into GEO 600: GOAL Squeezing-improved sensitivity for GEO 600 Test of squeezing as standard tool for future GW detectors 20

THANK YOU

SPARE SLIDES

AUTO-ALIGNMENT SCHEME

LOSS BUDGET 5%2%5% 1% 2% Total loss: 20%

LOSS BUDGET II Goal: 6 dB detected squeezing

SHOT NOISE (DARK FRINGE OPERATION)

BACK-ACTION NOISE (SQL) Shot noise Radiation pressure noise [Unruh 1982] [Jaekel, Reynaud 1990] QND- Regime Squeezed Light Input (8dB)