Jet Propulsion Laboratory

Slides:



Advertisements
Similar presentations
Hi-GAL PI: Sergio Molinari (Rome) + Hi-GAL team … (~150 researchers)
Advertisements

H 2 Formation in the Perseus Molecular Cloud: Observations Meet Theory.
The Relation between Atomic and Molecular Gas in the Outer Disks of Galaxies Jonathan Braine Observatoire de Bordeaux with... N. Brouillet, E. Gardan,
DUST AND MOLECULES IN SPIRAL GALAXIES as seen with the JCMT F.P. Israel, Sterrewacht Leiden.
The Distribution of the Milky Way ISM as revealed by the [CII] 158um line. Jorge L. Pineda Jet Propulsion Laboratory, California Institute of Technology.
Shells, Bubbles, Worms, and Chimneys: Highlights from the Canadian Galactic Plane Survey Shantanu Basu U. Western Ontario Michigan State University October.
Dust/Gas Correlation in the Large Magellanic Cloud: New Insights from the HERITAGE and MAGMA surveys Julia Roman-Duval July 14, 2010 HotScI.
PRISMAS PRISMAS PRobing InterStellar Molecules with Absorption line Studies M. Gerin, M. Ruaud, M. de Luca J. Cernicharo, E. Falgarone, B. Godard, J. Goicoechea,
2. 1 Yes, signal! Physical Properties of diffuse HI gas in the Galaxy from the Arecibo Millennium Survey T. H. Troland Physics & Astronomy Department.
Multiwavelength Sky by NASA. Radio Continuum (408 MHz). Intensity of radio continuum emission from surveys with ground- based radio telescopes (Jodrell.
Radio Astronomy And The Spiral Structure Of The Milky Way Jess Broderick Supervisor: Dr George Warr.
Herschel HIFI | Jürgen Stutzki for the HIFI team | Universität zu Köln| Pag. 1 Herschel HIFI: the Heterodyn Instrument for the Far-Infrared –PI-Institut:
Submillimeter Astronomy in the era of the SMA, 2005, Cambridge, MA Observations of Extragalactic Star Formation in [CI] (370  m) and CO J=7-6 T. Nikola.
A Multiphase, Sticky Particle, Star Formation Recipe for Cosmology
STAR FORMATION STUDIES with the CORNELL-CALTECH ATACAMA TELESCOPE Star Formation/ISM Working Group Paul F. Goldsmith (Cornell) & Neal. J. Evans II (Univ.
Chapter 11: The Interstellar Medium Region in the Constellation Orion named the Orion Nebula which is the closest star formation region to us. Jets and.
Jonathan Slavin Harvard-Smithsonian CfA
[OI] and [NII] Observations of Relevance to STO Gordon Stacey.
A Herschel Galactic Plane Survey of [NII] Emission: Preliminary Results Paul F. Goldsmith Umut Yildiz William D. Langer Jorge L. Pineda Jet Propulsion.
Mapping Hydrogen in the Galaxy, Galactic Halo and Local Group with the Galactic Arecibo L-Band Feed Array (GALFA) The GALFA-HI Survey starting with TOGS.
Molecular Gas and Star Formation in Nearby Galaxies Tony Wong Bolton Fellow Australia Telescope National Facility.
ASTR112 The Galaxy Lecture 6 Prof. John Hearnshaw 10. Galactic spiral structure 11. The galactic nucleus and central bulge 11.1 Infrared observations Galactic.
The CNM – How Much, How Cold, and Where? John Dickey University of Tasmania 4 February 2013 C + as an Astronomical Tool.
OBSERVATIONS OF INTERSTELLAR HYDROGEN FLUORIDE AND HYDROGEN CHLORIDE IN THE GALAXY Raquel R. Monje Darek C. Lis, Thomas Phillips, Paul F. Goldsmith Martin.
TURBULENCE AND HEATING OF MOLECULAR CLOUDS IN THE GALACTIC CENTER: Natalie Butterfield (UIowa) Cornelia Lang (UIowa) Betsy Mills (NRAO) Dominic Ludovici.
MALT 90 Millimetre Astronomy Legacy Team 90 GHz survey
A hot topic: the 21cm line I Benedetta Ciardi MPA.
Stratospheric Terahertz Observatory (STO)‏ 0.8-meter telescope, 1' um Heterodyne receiver arrays for wide-field [N II] and [C II] spectroscopy,
Molecular absorption in Cen A on VLBI scales Huib Jan van Langevelde, JIVE Ylva Pihlström, NRAO Tony Beasley, CARMA.
The Canadian Galactic Plane Survey Mapping the Ecology Of the Milky Way Galaxy.
1 Common Far-Infrared Properties of the Galactic Disk and Nearby Galaxies MNRAS 379, 974 (2007) Hiroyuki Hirashita Hiroyuki Hirashita (Univ. Tsukuba, Japan)
C + As a Primary Coolant and Tracer of Star Formation Dec 21 st, 2012.
When  meets IR the clouds hiding behind the dust & cosmic rays Isabelle Grenier Jean-Marc Casandjian Régis Terrier AIM, Service d’Astrophysique, CEA Saclay.
CO, CS or other molecules? Maria Cunningham, UNSW.
130 cMpc ~ 1 o z~ = 7.3 Lidz et al ‘Inverse’ views of evolution of large scale structure during reionization Neutral intergalactic medium via HI.
130 cMpc ~ 1 o z = 7.3 Lidz et al ‘Inverse’ views of evolution of large scale structure during reionization Neutral intergalactic medium via HI 21cm.
ASTR112 The Galaxy Lecture 8 Prof. John Hearnshaw 12. The interstellar medium (ISM): gas 12.1 Types of IS gas cloud 12.2 H II regions (diffuse gaseous.
The Canadian Galactic Plane Survey What is the CGPS? Status and some results What’s next? Mapping the Ecology of the Milky Way Galaxy.
CONDITIONS IN DENSE INTERSTELLAR CLOUDS Paul F. Goldsmith Jet Propulsion Laboratory with thanks to Ted Bergin, Di Li, the SWAS team, and the Taurus Mapping.
Atomic and Molecular Gas in Galaxies Mark Krumholz UC Santa Cruz The EVLA: Galaxies Through Cosmic Time December 18, 2008 Collaborators: Sara Ellison (U.
Gas Dynamics, AGN, Star Formation and ISM in Nearby Galaxies Eva Schinnerer (MPIA) S. Haan, F. Combes, S. Garcia-Burillo, C.G. Mundell, T. Böker, D.S.
The shapes of the THINGS HI profiles Presented by : Ianjamasimanana Roger Supervisor : Erwin de Blok UNIVERSITY OF CAPE TOWN.
Science with continuum data ALMA continuum observations: Physical, chemical properties and evolution of dust, SFR, SED, circumstellar discs, accretion.
ASTR112 The Galaxy Lecture 7 Prof. John Hearnshaw 11. The galactic nucleus and central bulge 11.1 Infrared observations (cont.) 11.2 Radio observations.
The structure of our Milky Way galaxy: a container of gas and stars arranged in various components with various properties.. Gaseous halo? ~ 6 x
[CII] mapping of the diffuse ISM with SPICA / SAFARI F. Levrier P. Hennebelle P. Lesaffre M. Gerin E. Falgarone (LERMA - ENS) F. Le Petit (LUTH - Observatoire.
What we look for when we look for the dark gas * John Dickey Wentworth Falls 26 Nov 2013 *Wordplay on a title by Raymond Carver, "What we talk about, when.
H 3 + Toward and Within the Galactic Center Tom Geballe, Gemini Observatory With thanks to Takeshi Oka, Ben McCall, Miwa Goto, Tomonori Usuda.
Dust cycle through the ISM Francois Boulanger Institut d ’Astrophysique Spatiale Global cycle and interstellar processing Evidence for evolution Sub-mm.
Motivation it is a key diagnostic of the ISM because: [CII] is the dominant cooling line of the ISM.
The Meudon PDR code on complex ISM structures F. Levrier P. Hennebelle, E. Falgarone, M. Gerin (LERMA - ENS) F. Le Petit (LUTH - Observatoire de Paris)
Radio Galaxies Part 3 Gas in Radio galaxies. Why gas in radio galaxies? Merger origin of radio galaxies. Evidence: mainly optical characteristics (tails,
Simulated [CII] 158 µm observations for SPICA / SAFARI F. Levrier P. Hennebelle, E. Falgarone, M. Gerin (LERMA - ENS) F. Le Petit (LUTH - Observatoire.
The Mopra Galactic Plane CO Survey the Mopra Galactic Plane CO Survey Catherine Braiding University of New South Wales Michael.
Mapping CO in the Outer Parts of UV Disks CO Detection Beyond the Optical Radius Miroslava Dessauges Observatoire de Genève, Switzerland Françoise Combes.
ASTR112 The Galaxy Lecture 9 Prof. John Hearnshaw 12. The interstellar medium: gas 12.3 H I clouds (and IS absorption lines) 12.4 Dense molecular clouds.
Gamma-ray Measurements of the distribution of Gas and Cosmic Ray in the Interstellar Space Yasushi Fukazawa Hiroshima University.
Big Bang f(HI) ~ 0 f(HI) ~ 1 f(HI) ~ History of Baryons (mostly hydrogen) Redshift Recombination Reionization z = 1000 (0.4Myr) z = 0 (13.6Gyr) z.
SOFIA and the ISM of Galaxies Xander Tielens & Jessie Dotson Presented by Eric Becklin.
First high-resolution 3D inversion of the dust emission in Galactic ISM with Spitzer/Herschel. The case region [l,b]=[30,0] A. Traficante, R. Paladini,
Radiation fields in the Milky Way and their role in High-Energy Astrophysics Richard Tuffs, Ruizhi Yang, & Felix Aharonian (MPI-Kernphysik Heidelberg)
The Ionization Toward The High-Mass Star-Forming Region NGC 6334 I Jorge L. Morales Ortiz 1,2 (Ph.D. Student) C. Ceccarelli 2, D. Lis 3, L. Olmi 1,4, R.
Takashi Hosokawa ( NAOJ ) Daejeon, Korea Shu-ichiro Inutsuka (Kyoto) Hosokawa & Inutsuka, astro-ph/ also see, Hosokawa & Inutsuka,
Distribution of Phases of the ISM - and how to see them
Ay126: Fine Structure Line Emission from the Galaxy
Part 2: The Milky Way 2.1 Components and Structure
Molecular Gas Distribution of our Galaxy: NANTEN Galactic Plane Survey
Gas of Planck Cold Dust Clumps
Presentation transcript:

Jet Propulsion Laboratory The Distribution of [CII] 158um emission in the Milky Way revealed by Herschel HIFI Jorge L. Pineda GOTC+ team: William D. Langer, Paul Goldsmith, Thangasamy Velusamy, Di Li, Karen Willacy, and Harold Yorke Jet Propulsion Laboratory September 2011

[CII] Tracks Interstellar Cloud Evolution Diffuse, atomic gas: H, C+ Transition clouds: H->H2, C+-> C0->CO Photon Dominated Regions (PDRs) H2, C+, C0,CO,13CO, etc HI H0 C+HI + H2 [CII] traces the physical conditions of the gas in all these cloud evolution stages. [CII] is the brightest far-infrared line. CO H2 got C+? Bill Langer (JPL), MW2011, September 20, 2011

COBE & BICE to Herschel HIFI CII - strongest Galactic far-IR line COBE 7o beam & ΔV ~ 103 km/s BICE 15’ beam & ΔV ~ 175 km/s COBE - widespread distribution of CII in the Galactic plane BICE - inner Galaxy distribution. 3kpc arm Molecular Ring? PDR/HII? Local ISM Nearby arms HIFI CII far-IR dust 350o < l < 30o & |b| < 3o Herschel HIFI has the spectral (<0.5 km/s) and spatial resolution (12”) to study individual clouds. BICE and IRAS

Galactic Observation of Terahertz C+ (GOT C+) Galactic Plane Survey - systematic volume weighted sample of 500 l.o.s. in the disk l (0o – 360o) at b = 0o, +/- 0.5o & 1o Observations completed 11 LOS 6 LOS 7 LOS 10 LOS Galactic Central Region: CII strip maps at 360 positions in on the fly (OTF) mapping mode.

Galactic Observation of Terahertz C+ (GOT C+) 1.0 Sampling every degree in galactic longitude in the inner galaxy Sampling every 2 degrees in galactic longitude in the outer galaxy 0.5 Galactic Latitude (b) 0.0 Galactic Longitude (l) -0.5 -1.0

HI Data from: SGPS, VGPS, and CGPS

HI HI+CO Data from: Mopra and CSO

HI HI+CO CII+HI CII+HI+CO Diffuse Cold Dense Warm Dense

200 km/s b=0.0° HI LSR Velocity HI -200 km/s -180° longitude 180°

200 km/s b=0.0° HI LSR Velocity HI -200 km/s -180° longitude 180°

HI+CO HI HI+CO b=0.0° -180° longitude 180° 200 km/s -200 km/s LSR Velocity HI HI+CO -200 km/s -180° longitude 180°

HI+CO HI HI+CO b=0.0° -180° longitude 180° 200 km/s -200 km/s LSR Velocity HI HI+CO -200 km/s -180° longitude 180°

HI+CO+CII HI HI+CO HI+CII CII+CO+HI b=0.0° -180° longitude 180° 200 km/s b=0.0° HI+CO+CII LSR Velocity HI HI+CO HI+CII CII+CO+HI -200 km/s -180° longitude 180°

HI+CO+CII HI HI+CO HI+CII CII+CO+HI b=0.0° -180° longitude 180° 200 km/s b=0.0° HI+CO+CII LSR Velocity HI HI+CO HI+CII CII+CO+HI -200 km/s -180° longitude 180°

CO

CO CO+13CO

High-Column Density/PDRs CO+13CO CII CII+CO CII+CO+13CO Cold Dense Diffuse Low-Column Density High-Column Density/PDRs

200 km/s b=0.0° CO LSR Velocity CO -200 km/s -180° longitude 180°

200 km/s b=0.0° CO LSR Velocity CO -200 km/s -180° longitude 180°

CO+13CO CO CO+13CO b=0.0° -180° longitude 180° 200 km/s -200 km/s LSR Velocity CO CO+13CO -200 km/s -180° longitude 180°

CO+13CO CO CO+13CO b=0.0° -180° longitude 180° 200 km/s -200 km/s LSR Velocity CO CO+13CO -200 km/s -180° longitude 180°

CO+13CO+CII CO CO+13CO CII CO+CII CO+13CO+CII b=0.0° -180° longitude 200 km/s b=0.0° CO+13CO+CII LSR Velocity CO CO+13CO CII CO+CII CO+13CO+CII -200 km/s -180° longitude 180°

CO+13CO+CII CO CO+13CO CII CO+CII CO+13CO+CII b=0.0° -180° longitude 200 km/s b=0.0° CO+13CO+CII LSR Velocity CO CO+13CO CII CO+CII CO+13CO+CII -200 km/s -180° longitude 180°

CO+13CO+CII CO CO+13CO CII CO+CII CO+13CO+CII CII+HI 200 km/s b=0.0° CO+13CO+CII LSR Velocity CII+HI Langer et al. 2010,2011, Bill Langer’s talk tomorrow HI+CII+CO Velusamy et al. 2010, Velusamy’s poster #31 CII+CO+13CO Pineda et al. 2010 CO CO+13CO CII CO+CII CO+13CO+CII -200 km/s -180° longitude 180°

Application: Disentangling the WNM and CNM in the Galaxy

Disentangling the WNM and CNM in the Galaxy The neutral interstellar medium gas is the dominant component of the ISM in galaxies. This gas consist in two components in rough thermal pressure equilibrium (Wolfire et al. 1995): the cold neutral medium (nh ~40cm-3; T=100K; CNM) and the warm neutral medium (nh ~0.5cm-3; 8000K; WNM). HI 21cm observations are only sensitive to the total column density of the gas making it impossible to disentangle the CNM and WNM gas from just from the HI emission in the galaxy. The [CII] emission traces the diffuse neutral gas but is sensitive to density and temperature. We can use GOTC+ [CII] observations along with HI to separate the CNM and WNM components in the Galaxy.

Disentangling the WNM and CNM in the Galaxy The [CII] intensity is proportional to density and temperature as 𝐼CII∝ nh*exp(-91.3K/Tkin) For T = 100K , and a typical HI column density of 1021 cm-2, the GOTC+ survey is sensitive to a HI gas with nh > 50 cm-3. We use the GOT C+ survey to separate the CNM and WNM components from the HI position velocity map of the Galaxy.

CNM Column Density WNM Column Density

CNM Column Density WNM Column Density WNM Velocity Range CNM Velocity Range

Disentangling the WNM and CNM in the Galaxy LSR Velocity 200 km/s HI, WNM [CII] HI, CNM b=0.0° -200 km/s -180° longitude +180°

Total Column density and Velocity Range vs galactic longitude: b=0.0 WNM Column Density CNM Column Density Total Velocity Range Velocity Range WNM Velocity Range CNM Velocity Range

Total Column density and Velocity Range vs galactic longitude: b=+/-0

Total Column density and Velocity Range vs galactic longitude : b=+/-1.0

-180° < l < 180° longitude

-60° < l < 60°

-30° < l < 30°

Disentangling the WNM and CNM in the Galaxy 20% of HI mass is in the CNM (nh ~40 cm-3; T=100K) and 80% in the WNM (nh ~0.5cm-3; T=8000K) The cold neutral medium mass increases up to about 30% in the inner galaxy. 16% of the area in the galaxy is populated by cold neutral medium clouds and 84% by warm neutral medium clouds.

Fraction of the Column density and Velocity range in CNM and WNM : b=0.0 Column Density Fraction CNM Column Density Fraction Velocity Range WNM Velocity Range Fraction CNM Velocity Range Fraction

Fraction of the Column density and Velocity range in CNM and WNM : b=+/-0.5

Fraction of the Column density and Velocity range in CNM and WNM : b=+/-1.0