A) EF175930 ATGGACAACTCAGCTCCAGACTCTTTACCTAGATCGGAAACCGCCGTCACCTACGACTCT 60 HM208590.1 ATGGACAACTCAGCTCCGGACTCCTTACCTAGATCGGAAACCGCCGTCACCTACGACTCT 60.

Slides:



Advertisements
Similar presentations
Suppl. Fig. S1 Suppl. Fig. S1 The nucleotide sequence and its deduced amino acid sequences of CaSAMDC. The full-length of CaSAMDC (GenBank Accession No.
Advertisements

Lecture 19, Chapter 11 Analysis of transgenic plants part II Neal Stewart.
Analysis of Transgenic Plants. 1.Regeneration on Selective Medium Selectable Marker Gene.
How do you identify and clone a gene of interest? Shotgun approach? Is there a better way?
Title: Stress-inducible expression of barley Hva1 gene in transgenic mulberry displays enhanced tolerance against drought, salinity and cold stress Journal.
Fig. S1 Mass spectra analysis of XXT4 reaction products demonstrating xylosyltransferase activity towards cellohexaose substrate. Predominant peaks represent.
Supplementary Fig. S1 Determination of T-DNA copy number by Southern blot analysis. Fifteen µg genomic DNA of Bintje and mutant nikku were digested with.
Figure S1. Figure S1. Relative expression levels of YUC family member transcripts in roots under high and low N conditions. Seedlings 4 days after germination.
Fig. S1. Amino acid sequence alignment of MYBS3 proteins. MYBS3 protein sequences of Arabidopsis thaliana (MYBH; NP_199550); (At3g16350; NP_188256), Glycine.
AtPAT10 TIP1 Akr1p1 Akr2p Erf2p Swf1p Pfa5 Pfa3 GODZ HIP14 Pfa4 AtPAT10 TIP1 Akr1p1 Akr2p Erf2p Swf1p Pfa5 Pfa3 GODZ HIP14 Pfa4 AtPAT10 TIP1 Akr1p1 Akr2p.
Jiang Lab Role Gene expression profiling of key potato biology (polyploidy, tuberization, late blight resistance) Provide services to the project for potato.
Fig. 1.
Homeobox leucine zipper protein 9 (HAT9) -AT2G Homeodomain(s) -Leucine Zipper Motif -DNA Binding -Dimerization ?? ~ Helix-turn-helix 5’3’ FWRV.
Determining Functionality of Arabidopsis Thaliana Genes in Embryo Development Ria Yagnik.
Arabidopsis Thaliana A Study of Genes and Embryo Development By Garen Polatoglu.
ATG AREB1 (At1g45249) AREB2 (At3g19290) ABF3 (At4g34000) ABF1 (At1g49720) No treatmentABA, 6h Chr. 1 areb1 (SALK_002984) // Chr. 3 Chr. 4 abf1-2 (SALK_132819)
Plants and algae Fungi Metazoa Protist Supplementary Figure 1. Phylogenetic analysis of GlsA1/ZRF orthologs in different organisms. Coloured background.
Louis et al. Figure S1 Mean expression intensity Figure S1. MPL1 expression in Arabidopsis organs The Genevestigator tool (
Fire-fly luciferase Light Signal transduction Signals luciferase luciferin Genetic Screens in Arabidopsis: Luciferase screening for gene discovery CCD.
Supplemental Figure 1. The cell death phenotype of fhy3 far1 double mutants. A. The cell death phenotype of fhy3-4 far1-2 mutant plants under LD conditions.
Figure S1. Co-expression network for MNM1: Shown is the co-expression network obtained from the ATTED-II database using MNM1 as a bait gene. The red dots.
Volume 5, Issue 2, Pages (March 2012)
Cui-Cui Zhang, Wen-Ya Yuan, Qi-Fa Zhang  Molecular Plant 
Supplemental Fig. S1 A B AtMYBS aa AtMYBS
Searching for the Genes that Control Seed Development
a b LB T-DNA RB Par WT PAR1/LAT4 Actin2 5’UTR 3’UTR At1g31830 Intron c
Table A. Sequences used in making CsKASII RNAi constructs
2470 bp 1891 bp WT bp 2314 bp A B Fig. S1. Verification with PCR amplification of the.
The Flavr Savr Tomato.
(A) SGT Antisense RNA construct
Additional file 2: Supplementary Figures
Supplemental Figure 1 A) B) C)
* * * Fig. S1 XB21-Os12g36180 Os11g43950 At4g12770 At4g
Volume 6, Issue 4, Pages (October 2000)
What is AT5G03500? --Background and Structure--
Skin-Specific Expression of ank-393, a Novel Ankyrin-3 Splice Variant
A Squalene Epoxidase Is Involved in Biosynthesis of Both the Antitumor Compound Clavaric Acid and Sterols in the Basidiomycete H. sublateritium  Ramiro.
Consequences of T‐DNA insertion on SWP expression in swp mutant.
Volume 5, Issue 2, Pages (March 2012)
Volume 101, Issue 5, Pages (May 2000)
Arabidopsis Transcription Factor Genes NF-YA1, 5, 6, and 9 Play Redundant Roles in Male Gametogenesis, Embryogenesis, and Seed Development  Jinye Mu,
Volume 7, Issue 5, Pages (May 2014)
Xiaofeng Cao, Steven E. Jacobsen  Current Biology 
Constitutive Expression of the CIRCADIAN CLOCK ASSOCIATED 1 (CCA1) Gene Disrupts Circadian Rhythms and Suppresses Its Own Expression  Zhi-Yong Wang, Elaine.
Luo Chongyuan , Durgin Brittany G. , Watanabe Naohide , Lam Eric  
Volume 48, Issue 4, Pages (November 2012)
Volume 94, Issue 6, Pages (September 1998)
Edwards Allen, Zhixin Xie, Adam M. Gustafson, James C. Carrington  Cell 
Identification and differential expression of human collagenase-3 mRNA species derived from internal deletion, alternative splicing, and different polyadenylation.
A DTX/MATE-Type Transporter Facilitates Abscisic Acid Efflux and Modulates ABA Sensitivity and Drought Tolerance in Arabidopsis  Haiwen Zhang, Huifen.
Volume 8, Issue 6, Pages (September 2014)
FLS2 Molecular Cell Volume 5, Issue 6, Pages (June 2000)
Volume 89, Issue 7, Pages (June 1997)
Volume 11, Issue 6, Pages (March 2001)
Volume 13, Issue 24, Pages (December 2003)
The Arabidopsis Transcription Factor AtTCP15 Regulates Endoreduplication by Modulating Expression of Key Cell-cycle Genes  Li Zi-Yu , Li Bin , Dong Ai-Wu.
Volume 10, Issue 1, Pages (January 2017)
Volume 1, Issue 2, Pages (January 1998)
The Arabidopsis NPR1 Gene That Controls Systemic Acquired Resistance Encodes a Novel Protein Containing Ankyrin Repeats  Hui Cao, Jane Glazebrook, Joseph.
Xiang Han, Hao Yu, Rongrong Yuan, Yan Yang, Fengying An, Genji Qin
Stella Plakidou-Dymock, David Dymock, Richard Hooley  Current Biology 
Volume 8, Issue 6, Pages (September 2014)
Cui-Cui Zhang, Wen-Ya Yuan, Qi-Fa Zhang  Molecular Plant 
Volume 12, Issue 17, Pages (September 2002)
New microsome-associated HT-family proteins from Nicotiana respond to pollination and define an HT/NOD-24 protein family  Kondo Katsuhiko , McClure Bruce.
Wang Long , Mai Yan-Xia , Zhang Yan-Chun , Luo Qian , Yang Hong-Quan  
Volume 2, Issue 4, Pages (July 2009)
Genome-Edited Triple-Recessive Mutation Alters Seed Dormancy in Wheat
Volume 4, Issue 1, Pages (January 2011)
DNA Damage-Induced Transcription of Transposable Elements and Long Non-coding RNAs in Arabidopsis Is Rare and ATM-Dependent  Zhenxing Wang, Rainer Schwacke,
Presentation transcript:

A) EF ATGGACAACTCAGCTCCAGACTCTTTACCTAGATCGGAAACCGCCGTCACCTACGACTCT 60 HM ATGGACAACTCAGCTCCGGACTCCTTACCTAGATCGGAAACCGCCGTCACCTACGACTCT 60 EF ATGGACAACTCAGCTCCGGACTCTTTACCTAGATCGGAAACCGCCGTCACCTACGACTCT 60 *****************.***** ************************************ EF CCTTACCCCCTCTACGCCATGTCCTTCTCCTCCTCCACCCACCGAATCGCCGTCGGGAGC 120 HM CCTTACCCCCTCTACGCGATGTCCTTCTCCTCCTCCACCCACCGAATCGCCGTCGGAAGC 120 EF CCGTACCCGCTCTACGCGATGTCCTTCTCCTCCTCCACCCACCGAATCGCCGTCGGGAGC 120 ** ***** ******** **************************************.*** EF TTCCTCGAGGACTACAACAACCGCATCGACATCCTCTCCTTCGACTCCGACTCCATGTCC 180 HM TTCCTCGAAGACTACAACAACCGCATCGACATCCTCTCCTTCGACTCCGACTCCATGTCC 180 EF TTCCTCGAGGACTACAACAACCGCATCGACATCCTCTCCTTCGACTCCGACTCCATGTCC 180 ********.*************************************************** EF CTCAAGCCCCTCCCGTCCCTCTCCTTCGAGCACCCTTACCCTCCCACCAAGCTCATGTTC 240 HM CTCAAGCCCCTCCCGTCCCTCTCCTTCGAGCACCCTTACCCTCCCACCAAGCTCATGTTC 240 EF CTCAAGCCCCTCCCATCCCTCTCCTTCGAGCACCCTTACCCTCCCACCAAGCTCATGTTC 240 **************.********************************************* EF AGCCCCCCCTCCCTCCGCCGCAGCGGCGGCGGCGACCTCCTCGCCTCCTCCGGCGACTTC 300 HM AGCCCCCCCTCCCTCCGCCGCAGCGGCGGCGGCGACCTCCTCGCCTCCTCCGGCGACTTC 300 EF AGTCCCCCCTCCCTCCGCCGCAGCGGCGGGGGCGACCTCCTCGCCTCCTCCGGCGACTTC 300 ** ************************** ****************************** EF CTCCGCCTCTGGGAGGTCAACGAAGACTCCTCCTCCGCGGAGCCAGTATCCGTCCTCAAC 360 HM CTCCGCCTCTGGGAGGTCAACGAAGACTCCTCCTCCGCGGAGCCAGTCTCCGTCCTCAAC 360 EF CTCCGCCTCTGGGAGGTCAACGAAGACTCCTCCTCCGCGGAGCCAGTATCGGTCCTCAAC 360 ***********************************************.** ********* EF AACAGCAAGACGAGCGAGTTCTGCGCGCCGCTGACCTCCTTCGACTGGAACGACGTCGAG 420 HM AACAGCAAGACGAGCGAGTTCTGCGCGCCGCTGACCTCCTTCGACTGGAACGACGTCGAG 420 EF AACAGCAAGACGAGCGAGTTCTGCGCGCCGCTGACCTCCTTCGACTGGAACGACGTGGAG 420 ******************************************************** *** EF CCGAAGCGGTTAGGCACGTGCAGCATCGACACCACGTGCACGATCTGGGACGTGGAGAGG 480 HM CCGAAGCGGTTAGGCACGTGCAGCATCGACACCACGTGCACGATCTGGGACGTGGAGAGG 480 EF CCGAAGCGGTTAGGCACGTGCAGCATCGACACCACGTGCACGATCTGGGACGTGGAGAGG 480 ************************************************************ EF TCCGTGGTGGAGACGCAGCTCATCGCGCACGACAAGGAGGTCCACGACATCGCGTGGGGG 540 HM TCCGTGGTGGAGACGCAGCTCATCGCGCACGACAARGAGGTCCACGACATCGCGTGGGGG 540 EF TCCGTGGTGGAGACGCAGCTCATCGCGCACGACAAGGAGGTCCACGACATCGCGTGGGGG 540 *********************************** ************************ EF GAGGCTAGGGTTTTCGCCTCGGTCTCCGCCGACGGATCGGTGAGGATCTTCGATCTGCGC 600 HM GAGGCTAGGGTTTTCGCCTCGGTCTCCGCCGACGGATCGGTGAGGATCTTCGATCTGCGC 600 EF GAGGCTAGGGTTTTCGCCTCGGTCTCCGCCGACGGATCGGTGAGGATCTTCGATCTGCGC 600 ************************************************************ EF GACAAGGAGCACTCCACCATCATCTACGAGAGCCCCCAGCCCGATACGCCGCTCCTGAGG 660 HM GACAAGGAGCACTCCACCATCATCTACGAGAGCCCCCAGCCCGATACGCCGCTCCTGAGG 660 EF GACAAGGAGCACTCCACCATCATCTACGAGAGCCCCCAGCCCGATACGCCGCTCCTGAGG 660 ************************************************************ EF CTCGCGTGGAACAAGCAGGACTTGAGGTGTATGGCGACGATTCTGATGGATTCGAATAAG 720 HM CTCGCCTGGAACAAGCAGGACTTGAGGTGTATGGCCACGATTCTGATGGATTCGAATAAG 720 EF CTCGCGTGGAACAAGCAGGACTTGCGGTGTATGGCCACGATTCTGATGGATTCGAATAAG 720 ***** ******************.********** ************************ EF GTTGTGATTCTCGATATTCGATCGCCGACGATGCCTGTCGCGGAGCTGGAGCGGCACCAG 780 HM GTTGTGATTCTCGATATTCGATCGCCGACGATGCCTGTCGCGGAGCTGGAGCGGCACCAG 780 EF GTTGTCATTCTCGACATTCGATCGCCGACGATGCCGGTCGCCGAGCTTGAAAGGCACCAG 780 ***** ******** ******************** ***** ***** **..******** Figure S1 (continued on next page)

EF GGGAGTGTGAATGCGATTGCTTGGGCCCCGCAGAGCTGTAAGCATATCTGCTCGGGTGGG 840 HM GGGAGTGTGAACGCGATTGCTTGGGCSCCGCAGAGCTGTAAGCATATCTGCTCGGGTGGK 840 EF GGGAGTGTGAACGCGATTGCGTGGGCGCCGCAGAGCTGTAAGCATATCTGCTCGGGTGGG 840 *********** ******** ***** ******************************** EF GATGACGCGCAGGCTCTTATCTGGGAGTTGCCGACGATGGCTGGACCGAATGGGATTGAT 900 HM GATGACGCGCAGGCTCTYATCTGGGAGTTGCCGACGATGGCTGGACCGAATGGGATTGAT 900 EF GATGACGCGCAGGCTCTTATCTGGGAGTTGCCGACGATGGCTGGGCCGAATGGGATTGAT 900 ***************** **************************.*************** EF CCTATGTCGGTTTACTCGGCCGGTTCGGAGATTAACCAGCTGCAGTGGTCTTCTTCGTTG 960 HM CCGATGTCGGTTTACTCGGCCGGTTCGGAGATTAACCAGCTGCAGTGGTCTTCTTCGTTG 960 EF CCCATGTCGGTTTACTCGGCCGGTTCGGAGATTAACCAGTTGCAGTGGTCGGCTTCTCTG 960 ** ************************************ ********** **** ** EF CCTGATTGGATTGGCATTGCGTTTGCTAACAAAATGCAGCTCCTTAGAGTTTGA 1014 HM CCTGATTGGATTGGCATTGCGTTTGCTAACAAAATGCAGCTCCTTAGAGTTTGA 1014 EF CCTGATTGGATTGGCATTGCGTTTGCTAACAAAATGCAGCTCCTCAGAGTTTGA 1014 ******************************************** ********* RB T-NOS BAR P-NOS CaMV 35S BnTTG1 - cDNA T-NOS LB P (8 kb parent Ti plasmid) Sac1 BamH1 RBT - NOSBARP-NOS CaMV 35S BnTTG1 sense GUS intron BnTTG1 antisense T-NOSLB P (8 kb parent Ti plasmid) Sac1SnaB1BamH1 Xba1 B) 260 bp Sequence TAGGCACGTGCAGCATCGACACCACGTGCACGATCTGGGACGTGGAGAGGTCCGTGGTGGAGACGCAGCTCATCGCGCAC GACAAGGAGGTCCACGACATCGGTGGGGGGAGGCTAGGGTTTTCGCCTCGGTCTCCGCCGACGGATCGGTGAGGATCTTC GATCTGCGCGACAAGGAGCACTCCACCATCATCTACGAGAGCCCCCAGCCCGATACGCCGCTCCTGAGGCTCGCGTGGAA CAAGCAGGACTTGAGGTGT C) Supplementary Fig. S1. Alignments between B. napus and B. rapa TTG1 sequences, primer coverage, and binary vector construction for manipulating BnTTG1 in B. napus. A. Alignments between EF (BnTTG1-1; B. napus isoform 1), EF (BnTTG1-1; B. napus isoform 2), and HM (B. rapa) from Genbank (only available genes at the time of experimentation). Primer coverage for vector construction is highlighted: red nucleotides for over-expression and green nucleotides for knockdown binary vectors. B. BnTTG1 Vector Construction. Top: over-expression binary construct (O-TTG1). Bottom: RNAi knockdown binary construct (K-TTG1). RB - Right border. LB – Left border. NOS - Nopaline synthase, BAR – phosphinothricin resistance selection gene. C. 260 bp sequence used to construct the RNAi knockdown construct. O-TTG1 K-TTG1

Supplementary Fig. S2. PCR confirmation of O-TTG1 or K-TTG1 TDNA in putative phosphinothricin tolerant T 0 transformants in B. napus cv Westar background and AtGL3 + B. napus (AtGL3 + ) background. A. BAR gene specific primers for O-TTG1 in Westar. Lane 1-20, 20 putative transgenic Westar plants. B. GUS intron specific primers for K-TTG1 in Westar. Lane 1-20, amplification products from 20 putative transgenic Westar plants. Lane (-), amplification product from a Westar untransformed plant (A, B); Lane (+), amplification product from the binary vector containing (A) BnTTG1 cDNA, (B) BnTTG1-RNAi (positive control). C. BAR gene specific primers detecting O-TTG1 in the AtGL3 + background. Lane 1-9, amplification products from nine putative transgenic AtGL3 + plants. D. GUS intron-specific primers detecting K-TTG1 in the AtGL3 + background. Lane 1- 10, amplification products from ten putative BnTTG1 knock-down transgenic AtGL3 + plants. Lane (-), amplification product from a AtGL3 + transformed control plant not carrying BnTTG1 (C, D); Lane (+), amplification product from the binary vector containing BnTTG1 cDNA (positive control). Transgenic lines O- 3, K-5 and K-6 were used to develop homozygous lines.

Supplementary Fig. S3. Representative Southern analysis to detect copy number of K-TTG1 and O-TTG1 TDNA in the AtGL3 + B. napus AtGL3 + recipient background and the cv. Westar recipient background. A. T 0 gDNA from AtGL3 + background transformed with the K-TTG1 and O-TTG1 binary constructs. Left, Lanes 1-10, Nine individual K-TTG1 T 0 plants. Right, Lanes 2-9, Seven individual O-TTG1 T 0 plants. Lane (-) DNA from a non-transformed AtGL3 + control plant. Arrows, single insertion K-lines with an enhanced ultra-hairy trichome phenotype (plants 5 and 6) or a hairy AtGL3 + -like trichome phenotype (plants 8 and 10), or two single insertion O-lines lacking trichomes. B. T 1 lines K-4, K-10, K-16 containing the K-TTG1 construct in a cv. Westar background. Left lane (-), DNA from a Westar non-transgenic control plant. DNA was extracted from six different seedlings (lanes 1-6) per line. C. T 0 O plants containing the O-TTG1 construct in B. napus cv Westar plants. Left lane (+), Positive control plasmid DNA. Right lane (-):DNA from Westar non-transgenic control plant. Lanes 1-18, DNA from 16 individual T 0 plants. Arrows, five single insertion O-lines. All lanes were loaded with 20 μg gDNA. A,B,C: gDNA was digested with HindIII and hybridized to a 32 P-labeled BAR gene-specific probe. D. cv. Westar, K-5-8, and lines probed with an AtGL3 transgene to confirm the genetic recipient background. AtGL3 does not include an Xba1 site, but does include one Kpn1 site. Blot shows the single insertion AtGL3 in K-5-7 and

AtGL Relative expression * * * * Plant # B. K-TTG1 in AtGL3+ B.napus W Relative expression * * * * * C. O-TTG1 in Westar Plant # W Relative expression * ** * A. K-TTG1 in Westar Plant # Supplementary Fig. S4. Relative expression of BnTTG1 in seedling tissues of T 0 plants transformed with K- TTG1 or O-TTG1 binary vectors in semi-glabrous cv. Westar and hairy AtGL3+ B. napus backgrounds using Q-PCR. Expression is relative to BnTTG1 expression in Westar or AtGL3+ B. napus seedling backgrounds (set at 1), which had been normalized to the expression of the B. napus housekeeping gene ACYTRANSFERASE 2. Three technical replicates (RNA samples from the same plant) were used per plant. A. Seven K-TTG1 + lines in Westar background. Plant lines 4 and 16 each have single TDNA insertions and plant 10 has multiple insertions (**). B. Four individual T 0 K-TTG1 plants in AtGL3 + B. napus background. Lines 5 and 6 have a single TDNA insertion (*) and an enhanced ultra-hairy trichome phenotype and thus were used to develop homozygous lines. Plants 8 and 10 have a single TDNA insertion (*) with a hairy AtGL3 + B. napus trichome phenotype. C. Eleven T 0 O-TTG1 lines in Westar background. Lines 5, 10, 11, 12 and 13 have single TDNA insertions (*). All plants in (A) and (B) show Westar-like growth and semi-glabrous trichome phenotypes. Southern blots supporting this data are shown above in Supplementary Fig. S3.

Supplementary Fig. S5. Fourth rosette leaf trichome phenotypes of two-week-old Arabidopsis thaliana SALK lines (BRG2), C (BRG2) and (SKS2). WT-Col, Columbia control ecotype. Size bar indicates 1 mm.

Supplementary Fig. S6. Stem trichomes on T 3 hairy and ultra-hairy B. napus plants at eight weeks after germination under greenhouse conditions. A, B. Glabrous stems on AtGL3 + B. napus. C, D). Ultra-hairy stems of K-5-8 (BnTTG1 knock-down in AtGL3 + B. napus). B and D are 2.5-fold magnifications of A and C. Size bar represents 1 cm.

Supplementary Fig. S7A. Heatmap illustrating the relative expression levels and numbers of unique up- regulated and down-regulated genes (p than log2 3 at the maximum intensity scale.

Supplementary Fig. S7B. Heatmap illustrating the relative expression levels and numbers of unique up- regulated and down-regulated genes (p than log2 3 at the maximum intensity scale.

Supplementary Fig. S8. Amino acid alignment between the AtGL3 and its B. napus GL3 homologues. Ref, Arabidopsis AtGL3 sequence. emb, B. napus sequences. Continued on next page. CLUSTAL W (1.83) multiple sequence alignment ref|NP_ | MATGQNRTTVPENLKKHLAVSVRNIQWSYGIFWSVSASQSGVLEWGDGYYNGDIKTRKTI emb|CDY | MVTGQNRTSVPENLKKQLAISIRSIQWSYAIFWSVSASQPGVLEWGDGYYNGDIKTRKTI emb|CDY | MVTGQNRTSVPENLKKQLAVSIRSIQWSYAIFWSVSASQPGVLEWGDGYYNGDIKTRKTI emb|CDY | MATGENRT-VQENLKKHLAVSVRNIQWSYGIFWSISASQPGVLEWGDGYYNGDIKTRKTI emb|CDY | MAAVENRM-VPENLKKHLAVSVRNIQWSYGIFWSVSASQPGLLEWGDGYYNGDIKTRKTV emb|CDY | MAAVENRM-VPENLKKHLAISVRNIQWSYGIFWSVSSSQPGLLEWGDGYYNGDIKTRKTV * ** * ***** ** * * ***** **** * ** * ***************** ref|NP_ | QASEIKADQLGLRRSEQLSELYESLSVAESSSSGVAAGSQVTRRASAAALSPEDLADTEW emb|CDY | QASEIKADQLGLRRSEQLRELFESLSIAESSSTGTAAGSQVSRRASAAALSPEDLADTEW emb|CDY | QASEIKADQLGLRRSEQLRELFESLSIAESSSTGTAVGSQVSRRASAAALSPEDLADTEW emb|CDY | QAVEVKADQLGLERSDQLRELYESLSVAESS---ASGGSQVSRRASATALSPEDLTDTEW emb|CDY | QASQVKADQLGLERSEQLRELYESLSLAESS---TSCGSQVTRRASAASLSPEDLTDTEW emb|CDY | QASQVKADQLGLERSEQLRELYESLSLAESS---TSCGSQVTRRASAASLSPEDLTDTEW ** ******* ** ** ** **** **** **** ***** ****** **** ref|NP_ | YYLVCMSFVFNIGEGMPGRTFANGEPIWLCNAHTADSKVFSRSLLAKSAAVKTVVCFPFL emb|CDY | YYLVCMSFVFKIGEGMPGRTFANGEPIWLCNAGTADSKVFSRSLLAKSASVNTVICFPFL emb|CDY | YYLVCMSFVFKIGEGMPGRTFANGEPIWLCNAGTADSKVFSRSLLAKSASVNTVICFPFL emb|CDY | YYLVCMSFVFNIGEGITGGALGNGEPIWLCNAHTADSKVFTRSLLAKSASLLTVVCFPFL emb|CDY | FYLVCMSFVFNIGEGIPGGALANGQPIWLCNAHTADSKVFTRSLLAKSASLLTVVCFPFL emb|CDY | FYLVCMSFVFNIGEGIPGGALANGQPIWLCNAHTADSKVFTRSLLAKSASLLTVVCFPFL ********* **** * ** ******* ******* ******** ** ***** ref|NP_ | GGVVEIGTTEHITEDMNVIQCVKTSFLEA-PDPYATIL-PARSDYHIDNVLDPQQILGDE emb|CDY | GGVVEIGTTEHIAEDMNVIQCVKKSFLEA-PDSNATILQPISSDYHIDNVLDPQHILEDE emb|CDY | GGVVEIGTTEHIAEDMNVIQCVKKSFLEA-PDPNASILQPISSDYHIDNVLDPQHILGDE emb|CDY | GGVLEIGTTEHITEDFNVIQCVKTLFLEAHPYGTIS----TRSDY--QEIFDP---LNSD emb|CDY | GGVLEIGTTEHVAENLNVIQCVKTLFLEA-PHGTLS----ARSDY--QEIFEP---LSND emb|CDY | GGVLEIGTTEHVAENLNVIQCVKTLFLEA-PHGTLS----TRSDY--QEIFDP---LSND *** ******* * ******* **** * *** * * ref|NP_ | IYAPMFSTEPFPTASPSRTTNGFDQEHEQVADDHDSFMTERITGGASQVQSWQLMDDELS emb|CDY | IYAPMFGTRPFQATSPSRTTNGFDPEHDQLAEDHDSFMAEGINS emb|CDY | IYAPMFGTRPFQATSPTRTTNGFDPEHDQLAEDHDSFMAEGINS emb|CDY | KYIPTFGTEAFPTTSTS VFEQELEDHDSFIN---GGGASQVQSWQFVGEELN emb|CDY | KYIPVFETEAFPTTSTS VYEQEPDDHDSFIN---GGGASQVQSWQFVGEELS emb|CDY | KYIPVFGTEAFPTTSTS VYEQEPDDHDSFIN---GGGASHVQSWQFVGEELS * * * * * * * ***** ref|NP_ | NCVHQSLNSSDCVSQTFVEGAAGRVAYGARKSRVQRLGQIQEQQRNVKTLSFDPRNDDVH emb|CDY | QKNVKMLSFDPRNDDVH emb|CDY | QKNVKMLSFDPRNDDVH emb|CDY | NCVHQPVNSSDCVSQTFVGGTTGRVSCNPRKSRPQRLGQIQEQSNRLNM------DDDVH emb|CDY | NCLHQPLNSSDCVSQTFVGAT-GRVSCGPRKSKSQRLGQIQEQSNRVNM------DDDVH emb|CDY | NCLHQPLNSSDC SQRLGQIQEQSNRVNM------DDDVH **** n

CLUSTAL W (1.83) Multiple amino acid sequence alignment between AtGL3 and B. napus GL3s continued. ref|NP_ | YQSVISTIFKTNHQLILGPQFRNCDKQSSFTRWKKSSS-SSSGTATVTAPSQGMLKKIIF emb|CDY | YQSVISTIFKTSHQLILGPQFRNCDKRSSFTRWKKPSP-SSCGTASIVAPSQGMLKKIIF emb|CDY | YQSVISTIFKTSHQLILGPQFRNCDKRSSFTRWKKPSP-SSSGTASIVAPSQGMLKKIIF emb|CDY | YQGVISTIFKTTHQLVLGPQFQNFDKRSSFTRWRRLPL-SAK---TLGEKSQNMLKKIVF emb|CDY | YQGVISTIFKTTHQLILGPQFHNFDKRSSFTRWRRSSS-SAK---SLGEKSQNMLNKIVF emb|CDY | YQGVISTIFKTTHQLVLGPQFHNLDKRSSFTRWRRSSSSSAK---SLGEKSQNILKKIVF ** ******** *** ***** * ** ****** * ** * ** * ref|NP_ | DVPRVHQK-----EKLMLDSPEARDETGNHAVLEKKRREKLNERFMTLRKIIPSINKIDK emb|CDY | EVPRVHQK-----EKLMLDSPVAGDETANHAVSEKKRREKLNERFLILRSIIPSINKSDK emb|CDY | EVPRVHQK-----EKLMLDSPVAGDETANHAVSEKKRREKLNERFLILRSIIPSVNKSDK emb|CDY | EVPRMHQKELLLPDTPEDNMFKVGDETGNHALSERKCREKLNDRFMTLRSIIPSISKIDK emb|CDY | EVPRMHQK-----DTPEDSGYKVGDETANHALSERKRREKLNDRFMTLRSMIPSISKIDK emb|CDY | EVPRMHQK-----DTLEDSGNKVGDETANHALSERKRREKLNDRFMTLRSMIPSISKIDK *** *** *** *** * * ***** ** ** *** * ** ref|NP_ | VSILDDTIEYLQELERRVQELESCRESTDTETRGTMTMKRKKPCDAGERTSANCANNETG emb|CDY | VSILDDTIEYLQELERRVQELESCRESTDTETRGTITVKRKKPYDAGERTSANCTNNEIG emb|CDY | VSILDDTIEYLQELERRVQELESCRESTDTETR ERTSANCTNNEIG emb|CDY | VSILDDTIDYLQELQRRVQELESCREYTDTEMQ--MPMKRKKPEDEDERASANCLNT--- emb|CDY | VSILDDTIEYLQELQRRVQELESCRESTDTEMR--MAMKRKKPDGEDESASANCLNN--- emb|CDY | VSILDDTIEYLQELQRRVQELESCRESIDTEMR--MAMKRKKPDGEDESASANCLNN--- ******** ***** *********** *** * **** * ref|NP_ | NGKKVSVNN--VGEAEPADTGFTGLTDNLRIGSFGNEVVIELRCAWREGVLLEIMDVISD emb|CDY | YVKR---TH--VGEAEPAETG---LTD-IRIRSFGNEVVIELRCVWREGVLLEIMDVISN emb|CDY | YVKR---TH--VGEAEPAETG---LTDNLRIRSFGNEVVIELRCVWREGVLLEIMDVISN emb|CDY | --KRKE-SDVNVGEDEPADTGYAGLTDNLRIGSFGNEVVIELRCAWREGILLEIMDVISH emb|CDY | --KRKE-SD--IGEDEPADTGYAGLTDNLRIGSFGNEVVIELRCAWREGILLEIMDVISD emb|CDY | --KRKE-SD--MGEDEPADTGYAGLTDNLRIGSFGNEVVIELRCAWREGILLEIMDVISD * ** *** ** *** ** ************ **** ********* ref|NP_ | LHLDSHSVQSSTGDGLLCLTVNCKHKGSKIATPGMIKEALQRV-----AWIC emb|CDY | LNLDSHSVQSSTGDGLLCLTVSCKHKGSKIATPGMIKEALKRLHGYVEDILA emb|CDY | LHLDSHSVQSSTGDGLLCLTVSCKHKGSKIATPGMIKEALQKV-----AWIC emb|CDY | LNLDSHSVQSSTGDGLLCLTVNCKHKGTNIATAGMIQEALQRV-----AWIC emb|CDY | LNLDSHSVQSSTGDGLLCLTVNCKHKGTKIATTGMIQDALQRV-----AWIC emb|CDY | LNLDSHSVQSSTGDGLLCLTVNCKHKGTKIATTGMIQDALQRV-----AWIC * ******************* ***** *** *** ** Fig. S8 continued. Amino acid alignment between the AtGL3 and its B. napus GL3 homologues. Ref, Arabidopsis AtGL3 sequence. emb, B. napus sequences.

A. B. Supplementary Fig. S9. Developmental expression profile of AtTTG1 and AtGL3 using in silico microarray data on the Arabidopsis eFP and TileViz browsers. A. Arabidopsis eFP browser display. B. Weigel World's TileViz program. AtTTG1, AT5G AtGL3, AT5G A developmental profile for AtGL3 was not available on the eFP browser, only on TileViz.