2-0 Copyright © 2007 Pearson Addison-Wesley. All rights reserved. A. Levitin “ Introduction to the Design & Analysis of Algorithms, ” 2 nd ed., Ch. 2 Theoretical.

Slides:



Advertisements
Similar presentations
Introduction to Algorithms
Advertisements

Chapter 2 Fundamentals of the Analysis of Algorithm Efficiency Copyright © 2007 Pearson Addison-Wesley. All rights reserved.
Introduction to Algorithms Rabie A. Ramadan rabieramadan.org 2 Some of the sides are exported from different sources.
Analysis of Algorithms
Chapter 3 Growth of Functions
Chapter 2: Fundamentals of the Analysis of Algorithm Efficiency
Introduction to Analysis of Algorithms
Complexity Analysis (Part I)
Chapter 2 Fundamentals of the Analysis of Algorithm Efficiency Copyright © 2007 Pearson Addison-Wesley. All rights reserved.
Design and Analysis of Algorithms - Chapter 21 Analysis of Algorithms b Issues: CorrectnessCorrectness Time efficiencyTime efficiency Space efficiencySpace.
Analysis of Algorithms (pt 2) (Chapter 4) COMP53 Oct 3, 2007.
Liang, Introduction to Java Programming, Eighth Edition, (c) 2011 Pearson Education, Inc. All rights reserved Chapter 23 Algorithm Efficiency.
Chapter 11 Limitations of Algorithm Power Copyright © 2007 Pearson Addison-Wesley. All rights reserved.
A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 2 ©2012 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved.
Analysis of Algorithms COMP171 Fall Analysis of Algorithms / Slide 2 Introduction * What is Algorithm? n a clearly specified set of simple instructions.
Chapter 2 Analysis Framework 2.1 – 2.2. Homework Remember questions due Wed. Remember questions due Wed. Read sections 2.1 and 2.2 Read sections 2.1 and.
© 2006 Pearson Addison-Wesley. All rights reserved10 A-1 Chapter 10 Algorithm Efficiency and Sorting.
Design and Analysis of Algorithms Chapter Analysis of Algorithms Dr. Ying Lu August 28, 2012
Liang, Introduction to Java Programming, Seventh Edition, (c) 2009 Pearson Education, Inc. All rights reserved Chapter 23 Algorithm Efficiency.
Analysis and Design of Algorithms. According to math historians the true origin of the word algorism: comes from a famous Persian author named ál-Khâwrázmî.
Last Class: Graph Undirected and directed (digraph): G=, vertex and edge Adjacency matrix and adjacency linked list
1 Chapter 24 Developing Efficient Algorithms. 2 Executing Time Suppose two algorithms perform the same task such as search (linear search vs. binary search)
{ CS203 Lecture 7 John Hurley Cal State LA. 2 Execution Time Suppose two algorithms perform the same task such as search (linear search vs. binary search)
Lecture 2 Computational Complexity
Algorithm Efficiency CS 110: Data Structures and Algorithms First Semester,
Mathematics Review and Asymptotic Notation
CS 3343: Analysis of Algorithms
Design and Analysis of Algorithms - Chapter 21 Analysis of Algorithms b Issues: CorrectnessCorrectness Time efficiencyTime efficiency Space efficiencySpace.
Analysis of Algorithm Efficiency Dr. Yingwu Zhu p5-11, p16-29, p43-53, p93-96.
CS 221 Analysis of Algorithms Instructor: Don McLaughlin.
© 2011 Pearson Addison-Wesley. All rights reserved 10 A-1 Chapter 10 Algorithm Efficiency and Sorting.
Coursenotes CS3114: Data Structures and Algorithms Clifford A. Shaffer Department of Computer Science Virginia Tech Copyright ©
Analysis of Algorithms CSCI Previous Evaluations of Programs Correctness – does the algorithm do what it is supposed to do? Generality – does it.
12-CRS-0106 REVISED 8 FEB 2013 CSG523/ Desain dan Analisis Algoritma Mathematical Analysis of Nonrecursive Algorithm Intelligence, Computing, Multimedia.
Lecture 5 Jianjun Hu Department of Computer Science and Engineering University of South Carolina CSCE350 Algorithms and Data Structure.
Algorithm Analysis Data Structures and Algorithms (60-254)
CSC310 © Tom Briggs Shippensburg University Fundamentals of the Analysis of Algorithm Efficiency Chapter 2.
Algorithmic Analysis Charl du Plessis and Robert Ketteringham.
Copyright © 2007 Pearson Addison-Wesley. All rights reserved. A. Levitin “ Introduction to the Design & Analysis of Algorithms, ” 2 nd ed., Ch. 1 Chapter.
Algorithm Analysis Part of slides are borrowed from UST.
Page 1 adapted after Dr. Menezes Analysis of Algorithms What does it mean to analyze ? Strictly speaking analysis is the separation of an intellectual.
1/6/20161 CS 3343: Analysis of Algorithms Lecture 2: Asymptotic Notations.
UNIT-I FUNDAMENTALS OF THE ANALYSIS OF ALGORITHM EFFICIENCY ANALYSIS AND DESIGN OF ALGORITHMS CHAPTER 2:
Copyright © 2007 Pearson Addison-Wesley. All rights reserved. A. Levitin “ Introduction to the Design & Analysis of Algorithms, ” 2 nd ed., Ch. 1 Chapter.
A. Levitin “Introduction to the Design & Analysis of Algorithms,” 3rd ed., Ch. 2 ©2012 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved.
Lecture 4 Jianjun Hu Department of Computer Science and Engineerintg University of South Carolina CSCE350 Algorithms and Data Structure.
BITS Pilani Pilani Campus Data Structure and Algorithms Design Dr. Maheswari Karthikeyan Lecture1.
LECTURE 2 : fundamentals of analysis of algorithm efficiency Introduction to design and analysis algorithm 1.
Chapter 2 Fundamentals of the Analysis of Algorithm Efficiency Copyright © 2007 Pearson Addison-Wesley. All rights reserved.
1-0 Design and Analysis of Algorithms – Unit I Chapter 1 Introduction.
Data Structures & Algorithm CS-102 Lecture 12 Asymptotic Analysis Lecturer: Syeda Nazia Ashraf 1.
Theoretical analysis of time efficiency
Analysis of Algorithms
Analysis of algorithms
Analysis of algorithms
Design and Analysis of Algorithms Chapter -2
Introduction to the Design and Analysis of Algorithms
Analysis of algorithms
Chapter 2 Fundamentals of the Analysis of Algorithm Efficiency
Chapter 2 Fundamentals of the Analysis of Algorithm Efficiency
Chapter 2 Fundamentals of the Analysis of Algorithm Efficiency
Analysis of algorithms
Chapter 2.
Fundamentals of the Analysis of Algorithm Efficiency
CSC 380: Design and Analysis of Algorithms
CSC 380: Design and Analysis of Algorithms
Analysis of algorithms
At the end of this session, learner will be able to:
Analysis of algorithms
Fundamentals of the Analysis of Algorithm Efficiency
Presentation transcript:

2-0 Copyright © 2007 Pearson Addison-Wesley. All rights reserved. A. Levitin “ Introduction to the Design & Analysis of Algorithms, ” 2 nd ed., Ch. 2 Theoretical analysis of time efficiency Time efficiency is analyzed by determining the number of repetitions of the basic operation as a function of input size b Basic operation: the operation that contributes most towards the running time of the algorithm T(n) ≈ c op C(n) T(n) ≈ c op C(n) running time execution time for basic operation Number of times basic operation is executed input size

2-1 Copyright © 2007 Pearson Addison-Wesley. All rights reserved. A. Levitin “ Introduction to the Design & Analysis of Algorithms, ” 2 nd ed., Ch. 2 Input size and basic operation examples Problem Input size measure Basic operation Searching for key in a list of n items Number of list’s items, i.e. n Key comparison Multiplication of two matrices Matrix dimensions or total number of elements Multiplication of two numbers Checking primality of a given integer n n’size = number of digits (in binary representation) Division Typical graph problem #vertices and/or edges Visiting a vertex or traversing an edge

2-2 Copyright © 2007 Pearson Addison-Wesley. All rights reserved. A. Levitin “ Introduction to the Design & Analysis of Algorithms, ” 2 nd ed., Ch. 2 Empirical analysis of time efficiency b Select a specific (typical) sample of inputs b Use physical unit of time (e.g., milliseconds) or or Count actual number of basic operation’s executions Count actual number of basic operation’s executions b Analyze the empirical data

2-3 Copyright © 2007 Pearson Addison-Wesley. All rights reserved. A. Levitin “ Introduction to the Design & Analysis of Algorithms, ” 2 nd ed., Ch. 2 Best-case, average-case, worst-case For some algorithms efficiency depends on form of input: b Worst case: C worst (n) – maximum over inputs of size n b Best case: C best (n) – minimum over inputs of size n b Average case: C avg (n) – “average” over inputs of size n Number of times the basic operation will be executed on typical inputNumber of times the basic operation will be executed on typical input NOT the average of worst and best caseNOT the average of worst and best case Expected number of basic operations considered as a random variable under some assumption about the probability distribution of all possible inputsExpected number of basic operations considered as a random variable under some assumption about the probability distribution of all possible inputs

2-4 Copyright © 2007 Pearson Addison-Wesley. All rights reserved. A. Levitin “ Introduction to the Design & Analysis of Algorithms, ” 2 nd ed., Ch. 2 Example: Sequential search b Worst case b Best case b Average case

2-5 Copyright © 2007 Pearson Addison-Wesley. All rights reserved. A. Levitin “ Introduction to the Design & Analysis of Algorithms, ” 2 nd ed., Ch. 2 Types of formulas for basic operation’s count b Exact formula e.g., C(n) = n(n-1)/2 e.g., C(n) = n(n-1)/2 b Formula indicating order of growth with specific multiplicative constant e.g., C(n) ≈ 0.5 n 2 e.g., C(n) ≈ 0.5 n 2 b Formula indicating order of growth with unknown multiplicative constant e.g., C(n) ≈ cn 2 e.g., C(n) ≈ cn 2

2-6 Copyright © 2007 Pearson Addison-Wesley. All rights reserved. A. Levitin “ Introduction to the Design & Analysis of Algorithms, ” 2 nd ed., Ch. 2 Order of growth b Most important: Order of growth within a constant multiple as n→∞ b Example: How much faster will algorithm run on computer that is twice as fast?How much faster will algorithm run on computer that is twice as fast? How much longer does it take to solve problem of double input size?How much longer does it take to solve problem of double input size?

2-7 Copyright © 2007 Pearson Addison-Wesley. All rights reserved. A. Levitin “ Introduction to the Design & Analysis of Algorithms, ” 2 nd ed., Ch. 2 Values of some important functions as n  

2-8 Copyright © 2007 Pearson Addison-Wesley. All rights reserved. A. Levitin “ Introduction to the Design & Analysis of Algorithms, ” 2 nd ed., Ch. 2 Asymptotic order of growth A way of comparing functions that ignores constant factors and small input sizes b O(g(n)): class of functions f(n) that grow no faster than g(n)  Θ (g(n)): class of functions f(n) that grow at same rate as g(n)  Ω (g(n)): class of functions f(n) that grow at least as fast as g(n)

2-9 Copyright © 2007 Pearson Addison-Wesley. All rights reserved. A. Levitin “ Introduction to the Design & Analysis of Algorithms, ” 2 nd ed., Ch. 2 Big-oh

2-10 Copyright © 2007 Pearson Addison-Wesley. All rights reserved. A. Levitin “ Introduction to the Design & Analysis of Algorithms, ” 2 nd ed., Ch. 2 Big-omega

2-11 Copyright © 2007 Pearson Addison-Wesley. All rights reserved. A. Levitin “ Introduction to the Design & Analysis of Algorithms, ” 2 nd ed., Ch. 2 Big-theta

2-12 Copyright © 2007 Pearson Addison-Wesley. All rights reserved. A. Levitin “ Introduction to the Design & Analysis of Algorithms, ” 2 nd ed., Ch. 2 Establishing order of growth using the definition Definition: f(n) is in O(g(n)) if order of growth of f(n) ≤ order of growth of g(n) (within constant multiple), i.e., there exist positive constant c and non-negative integer n 0 such that f(n) ≤ c g(n) for every n ≥ n 0 f(n) ≤ c g(n) for every n ≥ n 0Examples: b 10n is O(n 2 ) b 5n+20 is O(n)

2-13 Copyright © 2007 Pearson Addison-Wesley. All rights reserved. A. Levitin “ Introduction to the Design & Analysis of Algorithms, ” 2 nd ed., Ch. 2 Basic asymptotic efficiency classes 1constant log n logarithmic nlinear n log n n-log-n n2n2n2n2quadratic n3n3n3n3cubic 2n2n2n2nexponential n!n!n!n!factorial

2-14 Copyright © 2007 Pearson Addison-Wesley. All rights reserved. A. Levitin “ Introduction to the Design & Analysis of Algorithms, ” 2 nd ed., Ch. 2 Time efficiency of nonrecursive algorithms General Plan for Analysis b Decide on parameter n indicating input size b Identify algorithm’s basic operation b Determine worst, average, and best cases for input of size n b Set up a sum for the number of times the basic operation is executed b Simplify the sum using standard formulas and rules (see Appendix A)

2-15 Copyright © 2007 Pearson Addison-Wesley. All rights reserved. A. Levitin “ Introduction to the Design & Analysis of Algorithms, ” 2 nd ed., Ch. 2 Useful summation formulas and rules  l  i  u 1 = 1+1+…+1 = u - l + 1 In particular,  l  i  u 1 = n = n   (n) In particular,  l  i  u 1 = n = n   (n)  1  i  n i = 1+2+…+n = n(n+1)/2  n 2 /2   (n 2 )  1  i  n i 2 = …+n 2 = n(n+1)(2n+1)/6  n 3 /3   (n 3 )  0  i  n a i = 1 + a +…+ a n = (a n+1 - 1)/(a - 1) for any a  1 In particular,  0  i  n 2 i = …+ 2 n = 2 n   (2 n ) In particular,  0  i  n 2 i = …+ 2 n = 2 n   (2 n )  (a i ± b i ) =  a i ±  b i  ca i = c  a i  l  i  u a i =  l  i  m a i +  m+1  i  u a i

2-16 Copyright © 2007 Pearson Addison-Wesley. All rights reserved. A. Levitin “ Introduction to the Design & Analysis of Algorithms, ” 2 nd ed., Ch. 2 Example 1: Maximum element

2-17 Copyright © 2007 Pearson Addison-Wesley. All rights reserved. A. Levitin “ Introduction to the Design & Analysis of Algorithms, ” 2 nd ed., Ch. 2 Example 2: Element uniqueness problem

2-18 Copyright © 2007 Pearson Addison-Wesley. All rights reserved. A. Levitin “ Introduction to the Design & Analysis of Algorithms, ” 2 nd ed., Ch. 2 Example 3: Matrix multiplication

2-19 Copyright © 2007 Pearson Addison-Wesley. All rights reserved. A. Levitin “ Introduction to the Design & Analysis of Algorithms, ” 2 nd ed., Ch. 2 Example 5: Counting binary digits It cannot be investigated the way the previous examples are.

2-20 Copyright © 2007 Pearson Addison-Wesley. All rights reserved. A. Levitin “ Introduction to the Design & Analysis of Algorithms, ” 2 nd ed., Ch. 2 Plan for Analysis of Recursive Algorithms b Decide on a parameter indicating an input’s size. b Identify the algorithm’s basic operation. b Check whether the number of times the basic op. is executed may vary on different inputs of the same size. (If it may, the worst, average, and best cases must be investigated separately.) b Set up a recurrence relation with an appropriate initial condition expressing the number of times the basic op. is executed. b Solve the recurrence (or, at the very least, establish its solution’s order of growth) by backward substitutions or another method.

2-21 Copyright © 2007 Pearson Addison-Wesley. All rights reserved. A. Levitin “ Introduction to the Design & Analysis of Algorithms, ” 2 nd ed., Ch. 2 Example 1: Recursive evaluation of n! Definition: n ! = 1  2  …  (n-1)  n for n ≥ 1 and 0! = 1 Recursive definition of n!: F(n) = F(n-1)  n for n ≥ 1 and F(0) = 1 F(0) = 1Size: Basic operation: Recurrence relation:

2-22 Copyright © 2007 Pearson Addison-Wesley. All rights reserved. A. Levitin “ Introduction to the Design & Analysis of Algorithms, ” 2 nd ed., Ch. 2 Solving the recurrence for M(n) M(n) = M(n-1) + 1, M(0) = 0

2-23 Copyright © 2007 Pearson Addison-Wesley. All rights reserved. A. Levitin “ Introduction to the Design & Analysis of Algorithms, ” 2 nd ed., Ch. 2 Example 3: Counting #bits