ENS MHD induction & dynamo LYON Laboratoire de Physique

Slides:



Advertisements
Similar presentations
Dynamo Effects in Laboratory Plasmas S.C. Prager University of Wisconsin October, 2003.
Advertisements

Self-consistent mean field forces in two-fluid models of turbulent plasmas C. C. Hegna University of Wisconsin Madison, WI Hall Dynamo Get-together PPPL.
Magnetic Relaxation in MST S. Prager University of Wisconsin and CMSO.
Turbulent transport of magnetic fields Fausto Cattaneo Center for Magnetic Self-Organization in Laboratory and Astrophysical.
Plans for Dynamo Research Presented by F. Cattaneo, S. Prager.
Progress and Plans on Magnetic Reconnection for CMSO For NSF Site-Visit for CMSO May1-2, Experimental progress [M. Yamada] -Findings on two-fluid.
Madison 2006 Dynamo Fausto Cattaneo ANL - University of Chicago Stewart Prager University of Wisconsin.
Self-consistent mean field forces in two-fluid models of turbulent plasmas C. C. Hegna University of Wisconsin Madison, WI CMSO Meeting Madison, WI August.
CMSO 2005 Mean field dynamos: analytical and numerical results Fausto Cattaneo Center for Magnetic-Self Organization and Department.
The solar dynamo(s) Fausto Cattaneo Center for Magnetic Self-Organization in Laboratory and Astrophysical Plasmas Chicago 2003.
Chicago, October 2003 David Hughes Department of Applied Mathematics University of Leeds Nonlinear Effects in Mean Field Dynamo Theory.
Reconnection: Theory and Computation Programs and Plans C. C. Hegna Presented for E. Zweibel University of Wisconsin CMSO Meeting Madison, WI August 4,
Outline Dynamo: theoretical General considerations and plans Progress report Dynamo action associated with astrophysical jets Progress report Dynamo: experiment.
Vortex instability and the onset of superfluid turbulence
September 2005 Magnetic field excitation in galaxies.
Turbulent Models.  DNS – Direct Numerical Simulation ◦ Solve the equations exactly ◦ Possible with today’s supercomputers ◦ Upside – very accurate if.
Momentum Transport During Reconnection Events in the MST Reversed Field Pinch Alexey Kuritsyn In collaboration with A.F. Almagri, D.L. Brower, W.X. Ding,
Modeling of turbulence using filtering, and the absence of ``bottleneck’’ in MHD Annick Pouquet Jonathan Pietarila-Graham &, Darryl Pablo Mininni^
INTRODUCTION OF WAVE-PARTICLE RESONANCE IN TOKAMAKS J.Q. Dong Southwestern Institute of Physics Chengdu, China International School on Plasma Turbulence.
Numerical simulations of the magnetorotational instability (MRI) S.Fromang CEA Saclay, France J.Papaloizou (DAMTP, Cambridge, UK) G.Lesur (DAMTP, Cambridge,
New Mechanism of Generation of Large-Scale Magnetic Field in Turbulence with Large-Scale Velocity Shear I. ROGACHEVSKII, N. KLEEORIN, E. LIVERTS Ben-Gurion.
MHD Behaviour of Low-Aspect-Ratio RFP Plasmas in RELAX S.Masamune, T.Onchi, A.Sanpei, R.Ikezoe, K.Oki, T.Yamashita, H.Shimazu, N.Nishino 1), R.Paccagnella.
Statistical approach of Turbulence R. Monchaux N. Leprovost, F. Ravelet, P-H. Chavanis*, B. Dubrulle, F. Daviaud and A. Chiffaudel GIT-SPEC, Gif sur Yvette.
Influence of turbulence on the dynamo threshold B. Dubrulle, GIT/SPEC N. Leprovost, R. Dolganov, P. Blaineau J-P. Laval and F. Daviaud.
Numerical simulations of the MRI: the effects of dissipation coefficients S.Fromang CEA Saclay, France J.Papaloizou (DAMTP, Cambridge, UK) G.Lesur (DAMTP,
VKS collaboration: CEA - CNRS - ENS Lyon - ENS Paris 26th June - 1st July, 2006Warwick, UK MHD results in a liquid sodium turbulent flow: the VKS experiment.
Statistics of Lorenz force in kinematic stage of magnetic dynamo at large Prandtle number S.S.Vergeles Landau Institute for Theoretical Physics in collaboration.
Plasma Dynamos UCLA January 5th 2009 Steve Cowley, UKAEA Culham and Imperial Thanks to Alex Schekochihin, Russell Kulsrud, Greg Hammett and Mark Rosin.
Introduction to Space Weather Jie Zhang CSI 662 / PHYS 660 Spring, 2012 Copyright © The Sun: Magnetism Feb. 09, 2012.
Magnetic models of solar-like stars Laurène Jouve (Institut de Recherche en Astrophysique et Planétologie) B-Cool meeting December 2011.
S. H. Müller, CRPP, SwitzerlandIAEA TM – Trieste – March 2-4, Basic Turbulence Studies on TORPEX and Challenges in the Theory-Experiment Comparison.
A generalization of the Taylor-Green vortex to MHD: ideal and dissipative dynamics Annick Pouquet Alex Alexakis*, Marc-Etienne Brachet*, Ed Lee, Pablo.
Processes in Protoplanetary Disks Phil Armitage Colorado.
Origin, Evolution, and Signatures of Cosmological Magnetic Fields, Nordita, June 2015 Evolution of magnetic fields in large scale anisotropic MHD flows.
Kinetic Effects on the Linear and Nonlinear Stability Properties of Field- Reversed Configurations E. V. Belova PPPL 2003 APS DPP Meeting, October 2003.
Physics of Convection " Motivation: Convection is the engine that turns heat into motion. " Examples from Meteorology, Oceanography and Solid Earth Geophysics.
Effect of Magnetic Helicity on Non-Helical Turbulent Dynamos N. KLEEORIN and I. ROGACHEVSKII Ben-Gurion University of the Negev, Beer Sheva, ISRAEL.
Large scale magnetic fields and Dynamo theory Roman Shcherbakov, Turbulence Discussion Group 14 Apr 2008.
The efficient sustainment of a stable, high-β spheromak: modeling By Tom Jarboe, To PSI-Center July 29, 2015.
Resonant magnetic perturbation effect on the tearing mode dynamics in EXTRAP T2R: experimental results and modeling L. Frassinetti, K.E.J. Olofsson, P.R.
Dynamics of ITG driven turbulence in the presence of a large spatial scale vortex flow Zheng-Xiong Wang, 1 J. Q. Li, 1 J. Q. Dong, 2 and Y. Kishimoto 1.
Electron behaviour in three-dimensional collisionless magnetic reconnection A. Perona 1, D. Borgogno 2, D. Grasso 2,3 1 CFSA, Department of Physics, University.
LES of Turbulent Flows: Lecture 2 (ME EN )
Association EURATOM-CEA Electromagnetic Self-Organization and Turbulent Transport in Tokamaks G. Fuhr, S. Benkadda, P. Beyer France Japan Magnetic Fusion.
Box Model: Core Evolution ~ 700 Myr T(r,t) C(r,t) r ICB (t) 3D Model: Numerical Dynamo ~ 5 Myr intervals T(x,t) C(x,t) B(x,t) T(x,t) C(x,t) B(x,t) Thermodynamic.
MHD Dynamo Simulation by GeoFEM Hiroaki Matsui Research Organization for Informatuion Science & Technology(RIST), JAPAN 3rd ACES Workshop May, 5, 2002.
The Magneto-Rotational Instability and turbulent angular momentum transport Fausto Cattaneo Paul Fischer Aleksandr Obabko.
(National Institute for Fusion Science, Japan)
II. MAGNETOHYDRODYNAMICS (Space Climate School, Lapland, March, 2009) Eric Priest (St Andrews)
Center for MHD Studies Turbulent MHD flow in a cylindrical vessel excited by a misaligned magnetic field A. Kapusta and B. Mikhailovich Center for MHD.
The Solar Dynamo NSO Solar Physics Summer School Tamara Rogers, HAO June 15, 2007.
Seminar PPPL, 25 January 2011 Association Euratom-Cea 1 Interplay between neoclassical and turbulent transport on Tore Supra Acknowledgements: J. Abiteboul,
Turbulent transport coefficients from numerical experiments Axel Brandenburg & Matthias Rheinhardt (Nordita, Stockholm) Extracting concepts from grand.
ANGULAR MOMENTUM TRANSPORT BY MAGNETOHYDRODYNAMIC TURBULENCE Gordon Ogilvie University of Cambridge TACHOCLINE DYNAMICS
Nonlinear Simulations of Energetic Particle-driven Modes in Tokamaks Guoyong Fu Princeton Plasma Physics Laboratory Princeton, NJ, USA In collaboration.
Introduction to Space Weather Jie Zhang CSI 662 / PHYS 660 Spring, 2012 Copyright © The Sun: Magnetic Structure Feb. 16, 2012.
Arthur Straube PATTERNS IN CHAOTICALLY MIXING FLUID FLOWS Department of Physics, University of Potsdam, Germany COLLABORATION: A. Pikovsky, M. Abel URL:
IAEA-TM 02/03/2005 1G. Falchetto DRFC, CEA-Cadarache Association EURATOM-CEA NON-LINEAR FLUID SIMULATIONS of THE EFFECT of ROTATION on ION HEAT TURBULENT.
Prandtl number dependence of magnetic-to-kinetic dissipation 1.What gets in, will get out 2.Even for vanishing viscosity 3.What if magnetic fields 4. contribute?
Interaction between vortex flow and microturbulence Zheng-Xiong Wang (王正汹) Dalian University of Technology, Dalian, China West Lake International Symposium.
H. Isobe Plasma seminar 2004/06/16 1. Explaining the latitudinal distribution of sunspots with deep meridional flow D. Nandy and A.R. Choudhhuri 2002,
1 LES of Turbulent Flows: Lecture 13 (ME EN ) Prof. Rob Stoll Department of Mechanical Engineering University of Utah Spring 2011.
MHD turbulence in protoplanetary disks S.Fromang CEA Saclay, France J.Papaloizou (DAMTP, Cambridge, UK) G.Lesur (DAMTP, Cambridge, UK), T.Heinemann (DAMTP,
Overview of dynamos in stars and galaxies
Dynamo action & MHD turbulence (in the ISM, hopefully…)
Intro to Global Modeling and Prediction Session
Introduction to Space Weather
The Effects of Magnetic Prandtl Number On MHD Turbulence
Energy spectra of small scale dynamos with large Reynolds numbers
Catastrophic a-quenching alleviated by helicity flux and shear
Presentation transcript:

ENS MHD induction & dynamo LYON Laboratoire de Physique Ecole Normale supérieure Lyon (France) Jean-François Pinton pinton@ens-lyon.fr http://perso.ens-lyon.fr/jean-francois.pinton

Collaboration with Philippe Odier, Mickael Bourgoin, Romain Volk VKG : Stanislas Kripchenko, Petr Frick VKS : François Daviaud, Arnaud Chiffaudel, Stephan Fauve, François Petrelis, Louis Marié Numerics : Yanick Ricard, Yannick Ponty Hélène Politano

ENS LYON Motivations and approach: Non-linear physics, fluid turbulence Induction mechanisms high Rm, low Pm Dynamo - `non - analytical’ dynamos? - bifuraction in the presence of noise - saturation and dynamical regime Dynamo fields are self-tailored, and we wish we could control the flow !

Question addressed : B-measurement In situ 3D flow Liquid metal : Ga, Na Mean induction ? Fluctuations ?

Induction in mhd flows B-eq. only : field is too small to modify imposed u B0 imposed by external coils / currents Boundary conditions : flow + vessel + outside

Equations & parameters Liquid Gallium / Sodium Turbulent flows Weak applied field Strong, non-linear induction

Measurement of induction in VK flows Gallium at ENS-Lyon Sodium at CEA-Cadarache M. Bourgoin, et al., Phys. Fluids, 14 (9), 3046, (2001). L. Marie et al., Magnetohydrodynamics, 38, 163, (2002). F. Pétrélis et al., Phys. Rev. Lett., 90(17), 174501, (2003). M. Bourgoin et al., Magnetohydrodynamics, in press, (2004).

Von Karman flows B0 B0// Motor 2 Motor 1 H=2R 3D Hall probe Pressure Power Velocity feed-back H=2R R B0 B0// 3D Hall probe Pressure Motor 1 Motor 2 Thermocouple

VKS1 experiment at CEA-Cadarache

von Karman counter-2D (differential rotation) W R H=2R poloidal Toroidal

Omega effect W Twisting of mag field lines by shear B1q induit H=2R Twisting of mag field lines by shear B1q induit saturation linear

Von Karman 1D (helicity) W H=2R W=0 Hz R Vitesse azimutale Vitesse poloïdale x y z z (m) mesures LDV (L. Marié, CEA) x (m) x (m)

« alpha » effect W=0 Hz VKG W BIz Rm Na, Cadarache Ga, Lyon saturation H=2R W=0 Hz R VKG Na, Cadarache Ga, Lyon saturation quadratic BIz quadratic Rm

« alpha » effect W=0 Hz W Parker’s stretch and twist mechanism R H=2R

Turbulent fluctuations histogram time (s) Bind,z (G) applied B0 mean induced bz Bz (G)

Turbulent fluctuations 10 1 2 4 - 1 - 11/3 f (Hz) b² ~ Ω Ω/10 br bθ bz 3 particular regions

Mean induction: an iterative approach (assuming stationarity) real boundary condition An iterative study of time independent induction effects in mhd M. Bourgoin, P. Odier, J.-F. Pinton and Y. Ricard, Physics of Fluids, in press (2004).

Iterative approach Induction in the presence of an applied field avec + C.L.

Solving for B, I, F CL Neumann : (CL insulating)

Ex.1: w-effect in VK Potentiel électrique

Ex.1: w-effect in VK linéaire saturation

Ex.2: a-effect in VK R

Ex.2: a-effect in VK

Ex.2: a-effect in VK

Ex.3: boundary effect in VK

Turbulent fluctuations : a mixed LES - DNS scheme periodic boundary condition Simulation of induction at low magnetic Prandtl number Y. Ponty, H. Politano and J.-F. Pinton:, Physal Review Letters, in press, (2004).

Turbulence : coupled LES-DNS Include turbulence, but : viscous dissipative scale : h = L/Re3/4 magnetic ohmic scale : hB = L/Rm3/4 PSD B u 1/L 1/hB 1/h DNS LES

Taylor-Green vortex flow pseudo spectral code 1283 Pm = 0.001, Rm=7, Rl=100 Chollet-Lesieur cutoff h(k,t) ≈ (a + b(k/Kc)8)sqrt(E(Kc,t)/Kc)

TG, local induction

TG, global mode VKS exp. TG simul Local

TG, global mode VKS exp. TG simul B-energy

In progress VKS dynamo Turbulence & induction Earth dynamo