Periscope Configuration

Slides:



Advertisements
Similar presentations
Brazilian Tunable Filter Imager (BTFI) Preliminary Design Review (PDR)‏ USP-IAG Universidade de São Paulo 18-19th June 2008 iBTF module Prototyping Version.
Advertisements

LWIR FPA Mirror Image Problem & Recovery April 11, 2011 Roy W. Esplin Dave McLain.
November 20, 2003University of Colorado The Off-Plane Option Study Results Potential Capabilities Webster Cash University of Colorado.
Practical Optics Class Opti696D, Fall Laser Bar Code Scanner Chunyu Zhao.
Nasrin Ghanbari OPTI 521. Introduction Spherical wavefront from interferometer is incident on CGH Reflected light will have an aspheric phase function.
Paul B. Reid Harvard-Smithsonian Center for Astrophysics HEAD2013 April 8, 2013 Paul B. Reid Harvard-Smithsonian Center for Astrophysics HEAD2013 April.
Keck I Cassegrain ADC: Preliminary Design Overview UCO/Lick Observatory 15 October 2003.
DHS/DFS description, JWST Informal Monthly, November 2003 Sivaramakrishnan Co-phasing JWST during commissioning using Dispersed Hartmann Sensing or Dispersed.
1 Grating Mount Requirements Weight:< 75 Lbs including grating (43.1 Lbs) Size:Fit within structural envelope. 1.5” for cell behind grating. Alignment:Adjust.
1 Laser Beam Coherence Purpose: To determine the frequency separation between the axial modes of a He-Ne Laser All sources of light, including lasers,
M2 Assembly and Feed Optics Ron Price August 25, 2003.
The Field of View of a Thin Lens Interferometer Baseline=2B F F=range from array center to detector  ’’  Nulled here. B B 2Bsin  Bsin  2 Channels.
1 Laser Guide Star Wavefront Sensor Mini-Review 6/15/2015Richard Dekany 12/07/2009.
Use of a commercial laser tracker for optical alignment James H. Burge, Peng Su, Chunyu Zhao, Tom Zobrist College of Optical Sciences Steward Observatory.
On-Orbit Adjustment Calculation for the Generation-X X-ray mirror Figure D. A. Schwartz, R. J. Brissenden, M. Elvis, G. Fabbiano, D. Jerius, M. Juda, P.
September 19, 2002University of Colorado The Off-Plane Option for the Reflection Grating Spectrometer Webster Cash University of Colorado.
PLATO kick-off meeting 09-Nov-2010 PLATO Payload overall architecture.
MICE Collaboration Meeting March 29 - April 1, CERN MICE alignment, tolerances and supports Tuesday March 30 Room Edgar Black/IIT March17-
Thermally Deformable Mirrors: a new Adaptive Optics scheme for Advanced Gravitational Wave Interferometers Marie Kasprzack Laboratoire de l’Accélérateur.
Generation-X telescope: Measurement of On-Orbit Adjustment Data Dan Schwartz, R. J. Brissenden, M. Elvis, G. Fabbiano, T. Gaetz, D. Jerius, M. Juda, P.
Grazing-incidence design and others L. Poletto Istituto Nazionale per la Fisica della Materia (INFM) Department of Electronics and Informatics - Padova.
15/8/03Copyright Sigmadyne, Inc. Optomechanical Design and Analysis of Adaptive Optical Systems using FEA and Optical Design Software Victor Genberg, Keith.
Dennis C. Evans p1 SuperNova/Acceleration Probe 16 November 2001 Optical Analysis & Stray Light Evaluation Optical Analysis and Stray Light Evaluation.
Solar orbiter – EUS instrument mechanical design Tim Froud and Doug Griffin.
1 Mirror subsystem: telescope structure Functions: Functions: Support mirrors subsystem to S/C Support mirrors subsystem to S/C Accommodate cryostat Accommodate.
SAM PDR1 SAM LGS Mechanical Design A. Montane, A. Tokovinin, H. Ochoa SAM LGS Preliminary Design Review September 2007, La Serena.
MCAO Adaptive Optics Module Mechanical Design Eric James.
1 FRIDA Engineering Status 17/05/07 Engineering Status May 17, 2007 F.J. Fuentes InFraRed Imager and Dissector for Adaptive Optics.
IPBSM status and plan ATF project meeting M.Oroku.
ATLAS Pixel Detector Discussion of Tolerances November 12, 1998 Pixel Mechanics D. Bintinger, LBNL E. Anderssen, LBNL/CERN.
Chris Chrzanowski Charles Frohlich Swales Aerospace, Inc.
FLAO system test plan in solar tower S. Esposito, G. Brusa, L. Busoni FLAO system external review, Florence, 30/31 March 2009.
Optical surface measurements for very large flat mirrors Jim Burge, Peng Su, and Chunyu Zhao College of Optical Sciences University of Arizona Julius Yellowhair.
PACS SVR 22/23 June 2006 PACS FPU Subunits1 FM FPU Subunits A. Poglitsch.
NORDFORSK Summer School, La Palma, June-July 2006 NOT: Telescope and Instrumentation Michal I. Andersen & Heidi Korhonen Astrophysikalisches Institut Potsdam.
K-D-PR Fabrication and testing of KGMT FSM prototype Oct Ho-Soon Yang, Hak-Yong Kihm, Il-Kwon Moon, Jae-Bong Song, Yun-Woo Lee Korea.
Design of a Lightweight Mounted Tip/Tilt Mirror
MAXIM Webster Cash University of Colorado. Capella ”
12/12/2014L. Proserpio – AXRO meeting, Prague  Definition of terms  Description of the problem wrt the x-ray thin mirrors technologies.
VG1 i T i March 9, 2006 W. O. Miller ATLAS Silicon Tracker Upgrade Upgrade Stave Study Topics Current Analysis Tasks –Stave Stiffness, ability to resist.
Zero field The 25 ‑ m f /0.7 primary mirror for the Giant Magellan Telescope (GMT) is made of seven 8.4 ‑ m segments in a close packed array. Each of the.
The Active Optics System S. Thomas and the AO team.
MAXIM Periscope ISAL Study Highlights ISAL Study beginning 14 April 2003.
1 Development of Light Weight Replicated Integral Optics: An Innovative Approach Suzanne Romaine (SAO) R. Bruni, P. Gorenstein, R. Rosati (SAO) B. Ramsey.
4/20/2004s.e.mathews1 Steward Observatory Technical Division Mechanical Engineering Seminar Series Seminar #1 April 20, 2004.
1 Design and analysis for interferometric measurements of the GMT primary mirror segments J. H. Burge a,b, L. B. Kot a, H. M. Martin a, R. Zehnder b, C.
Engineering Division 1 M321/M331 Mirror Switchyard Design Review Tom Miller
N A S A G O D D A R D S P A C E F L I G H T C E N T E R I n t e g r a t e d D e s i g n C a p a b i l i t y / I n s t r u m e n t S y n t h e s i s & A.
Design and Development of the FSM (Fast steering Secondary Mirror)
IRMOS Diffraction Grating Integral Tab Design  Performance of an optical system is highly sensitive to the surface distortion of the optics in the system.
N A S A G O D D A R D S P A C E F L I G H T C E N T E R I n t e g r a t e d D e s i g n C a p a b i l i t y / I n s t r u m e n t S y n t h e s i s & A.
On the Evaluation of Optical Performace of Observing Instruments Y. Suematsu (National Astronomical Observatory of Japan) ABSTRACT: It is useful to represent.
14FEB2005/KWCAE2-UsersGroup Astro-E2 X-Ray Telescopes XRT Setup & Structure Performance Characteristics –Effective Area –Angular Resolution –Optical Axes.
Flexure Mounts For High Resolution Optical Elements
Lightweight mirror technology using a thin facesheet with active rigid support J. H. Burge, J. R. P. Angel, B. Cuerden, H. Martin, S. Miller University.
IPBSM Operation 11th ATF2 Project Meeting Jan. 14, 2011 SLAC National Accelerator Laboratory Menlo Park, California Y. Yamaguchi, M.Oroku, Jacqueline Yan.
N A S A G O D D A R D S P A C E F L I G H T C E N T E R I n t e g r a t e d D e s i g n C a p a b i l i t y / I n s t r u m e n t S y n t h e s i s & A.
X-ray Interferometer Mirror Module ISAL Study Pre-work Overview.
ST7 Interferometer LIGO-G Z1 The ST7 Interferometer Andreas Kuhnert Robert Spero Jet Propulsion Laboratory California Institute of Technology.
10 September 2010 Immanuel Gfall (HEPHY Vienna) Belle II SVD Upgrade, Mechanics and Cooling OEPG/FAKT Meeting 2010.
Webster Cash Keith Gendreau and The Maxim Team MAXIM The Black Hole Imager.
Date of download: 5/29/2016 Copyright © 2016 SPIE. All rights reserved. Drawing of the Space Infrared Telescope for Cosmology and Astrophysics (SPICA)
Development of Micro-Pore Optics at NAOC MPO research group X-ray Imaging Laboratory, NAOC Presented by Chen Zhang.
Integral Field Spectrograph Opto-mechanical concepts PIERRE KARST, JEAN-LUC GIMENEZ CPPM(CNRS),FRANCE.
CCAT Primary Mirror Panel Study
Carousel Interferometer for Metrological Applications
A. WAVE OPTICS B. GEOMETRIC OPTICS Light Rays
Structure Function Analysis of Annular Zernike Polynomials
Another Modular Focal Plane: Part 2 – FP assembly
Optics Alan Title, HMI-LMSAL Lead,
Presentation transcript:

Periscope Configuration Detector X Z Periscope Module

Mirror Parameters Active area is 30cm long x 2, 10 or 30cm wide. Reflecting surface 30 cm TBD Active area is 30cm long x 2, 10 or 30cm wide. Surface figure requirement: l/400 rms (at 633nm) --Mounted Mirror mass must be minimized Geometry TBD

Mirror Module Coordinate System Mirror Control: X – linear Roll about LOS Pitch LOS X Roll Z=LOS Y Pitch Yaw Fixed Mirrors Module Control: Yaw Pitch Roll about LOS To Detector

Mirror Geometry and Figure Mirror geometry must: Meet the surface figure requirement 1g release Operating temperature range Thermal gradient Mount distortions Have minimum mass Accommodate mount and mechanisms Survive launch and environment extremes

First Order Wavefront Error Budget Error Budget for /400 RMS Mirror Mount All values given in RMS wavefront error  = 6328Å Thermal gradient .0011 Jitter .0006 Mount interface surface finish .0003 Mirror blank surface figure .0013 Stability .0013 Assembly (neglected) Surface distortion due to gravity .0004 Manufacturing .0013 Test .0013 Alignment .0013 Motion due to gravity (neglected) Reflective coating .0009 Bolt preload .0002 Adhesive strain .0002 Bulk temp (5°C) .0005 1g sag .0004 Total RMS error .0025

Initial Geometries considered: Rectangular, held from back Various lightweighting patterns/pockets cut from back Single Arch Various thicknesses Double arch over length on backside Lightweighting pockets in back of main rib Z X Y

First Order FEM results of different geometries for 1m long mirror Geometry: 1m L x 5cm W Surface Deflection (nm) 1g (z) 1g (y) 1g (x) 1C Bolt preload 30% Weight-relieved rectangle (1.3Kg) 5cm tall 1569.7 1143.5 156.2 437.4 1038.9 Solid single arch 1.8 cm tall (1.04Kg) 807.5 1188.7 252.4 770.4 1037.3 5 cm tall 102.9 2659.4 114.9 269.0 974.6 Single arch w/ double arch along length 131.0 2354.8 179.5 387.1 1043.2

Attempted Wavefront Analysis Solid single arch, 5cm tall 3 posts on back side 1 wave = 633nm, Tilt and piston removed % data points w/ fit error > .010 waves Wavefront using surface of actual data points Wavefront using Zernike polynomial surface/grid points # pts PV rms Bolt preload 76.9 1610 .005 .004 87 .170 .054 1g (x) 88.7 .469 .091 .047 .013 1g (y) 92.7 .673 .097 3.065 1.073 1g (z) 97.5 .315 .086 .449 .161 1 deg C 81.2 .463 .094 .175

Wavefront analysis Wavefront analysis not adequate: Zernike polynomials do not fit to long rectangular optical surface Consider using LeGendre polynomials? Good for cylindrical optic fits (used Chandra mirror analysis) Orthogonal polynomials? Ref. Integrated Optomechanical Analysis Doyle, Genberg, Michels, p.61

Optical Tolerances Goal: Good fringe clarity at the focal plane Maintain phase information as it passes through each channel of the interferometer simultaneously Analytical Analysis: Limit OPD < l/10 Raytrace Analysis: Limit relative Strehl ratio > 80%

Mirror Separation within a periscope

Analytical vs. Raytrace Mirror Position Tolerances DOF Equation Analytic Raytrace X ±1.7nm ± 2nm Y ± 3mm Not modeled Z ± 49nm ± 70nm X-rotation ± 0.4° Y-rotation ± 1.8 marcsec ± 2marcsec Z-rotation ± 59 marcsec ±60marcsec where l = 20Å, g =2°, m = 83cm, and L = 400km

MAXIM Pathfinder Parameters Baseline = 2 m Focal Length = 200 km Mirror length = 30 cm Graze angle = 2° l = 10Å

MAXIM Pathfinder Position Tolerances l=1nm, F=200km, D=2m, m=30cm, g=2deg, dh=1mm DOF Mirror Equation Periscope Equation Mirror Tolerance X ±0.8nm ±20mm Y ±0.6mm ± 1mm Z ±23.6nm ±8m X-rot (yaw) ±0.2° ± 0.13° Y-rot (pitch) ±1.3 marcsec ± 10.3 arcsec Z-rot (roll) ±37.2 ± 0.26°

Full MAXIM Parameters Baseline = 1km Focal Length = 20,000 km Mirror length = 30 cm Graze angle = 1° l = 10Å

X-direction Sensitivity F X D y Z Allowable Mirror Motion: ± 1.7nm Allowable Periscope Motion: ± 4mm

Y-direction Sensitivity X Z=LOS Y Allowable Mirror Motion: ± 0.3mm Allowable Periscope Motion: ± 0.5mm

Z-direction Sensitivity F D y Z X Allowable Mirror Motion: ± 94.7nm Allowable Periscope Motion: ± 0.32m

X-rotation “yaw” Sensitivity Z Y msin(g) m Allowable Mirror Motion: ± 6.9arcmin Allowable Periscope Motion: ± 7.8 arcmin

Y-rotation “pitch” Sensitivity X Z F y D Allowable Mirror Motion: ± 2.3 marcsec Allowable Periscope Motion: ± 10 arcsec

Z-rotation “roll” Sensitivity LOS X Z=LOS Roll Y Allowable Mirror Motion: ± 0.13 arcsec Allowable Periscope Motion: ± 18.5 arcsec To Detector

MAXIM Position Tolerances l=1nm, F=20,000km, D=1km, m=30cm, g=1deg, dh=1mm DOF Mirror Equation Periscope Equation Mirror Tolerance X ±1.7nm ±4mm Y ±0.3mm ± 0.5mm Z ±94.7nm ±0.32m X-rot (yaw) ±6.9 arcmin ± 7.8 Y-rot (pitch) ±2.3 marcsec ± 10 arcsec Z-rot (roll) ±0.13 ±18.5

ISAL Raytrace Position Tolerances l=1nm, F=200km, D=4m, m=30cm, g=1deg, dh=1mm DOF Mirror Equation Periscope Equation Mirror Tolerance X ±1.7nm ±10mm Y ±0.3mm ± 0.5mm Z ±94.7nm ±2m X-rot (yaw) ±6.9 arcmin ± 7.8 Y-rot (pitch) ±2.3 marcsec ± 10 arcsec Z-rot (roll) ±0.13 ±7.6

Move one mirror pair wrt other mirror pair -d +d Pathlength is self-correcting

Move one mirror in Z-direction dcos2q 2q -d dsinq

Trade Studies Three grating sizes: Optimize graze angle vs. mass 2cm, 10cm, and 30cm wide x 30 cm long Optimize graze angle vs. mass Lower graze angle can loosen some tolerances Lower graze angle will reduce throughput or increase mass