Computer Vision Group Prof. Daniel Cremers Autonomous Navigation for Flying Robots Lecture 1.1: Welcome Jürgen Sturm Technische Universität München.

Slides:



Advertisements
Similar presentations
David Rosen Goals  Overview of some of the big ideas in autonomous systems  Theme: Dynamical and stochastic systems lie at the intersection of mathematics.
Advertisements

Computer Vision Group Prof. Daniel Cremers Autonomous Navigation for Flying Robots Lecture 2.4: Homework Discussion (of last week) Jürgen Sturm Technische.
Computer Vision Group Prof. Daniel Cremers Autonomous Navigation for Flying Robots Lecture 1.3: Flying Principle of a Quadrotor Jürgen Sturm Technische.
USC Viterbi School of Engineering. Information Technology Goals Perform the fundamental research and develop the software components for automating mega-
Luis Mejias, Srikanth Saripalli, Pascual Campoy and Gaurav Sukhatme.
Project Members: Yuri Bakulin Maxim Kirilov Yuval Kovler Academic Advisor : Prof. Yuval Elovici Technical Advisor : Rami Puzis.
Benjamin Stephens Carnegie Mellon University 9 th IEEE-RAS International Conference on Humanoid Robots December 8, 2009 Modeling and Control of Periodic.
Project Progress Presentation Coffee delivery mission Dec, 10, 2007 NSH 3211 Hyun Soo Park, Iacopo Gentilini 1.
TOWARD DYNAMIC GRASP ACQUISITION: THE G-SLAM PROBLEM Li (Emma) Zhang and Jeff Trinkle Department of Computer Science, Rensselaer Polytechnic Institute.
Autonomous Robot Navigation Panos Trahanias ΗΥ475 Fall 2007.
Introduction to Kalman Filter and SLAM Ting-Wei Hsu 08/10/30.
Mechatronics 1 Week 2. Learning Outcomes By the end of this session, students will understand constituents of robotics, robot anatomy and what contributes.
Stanford CS223B Computer Vision, Winter 2006 Lecture 11 Filters / Motion Tracking Professor Sebastian Thrun CAs: Dan Maynes-Aminzade, Mitul Saha, Greg.
Robotics Industry Posts Second Best Year Ever North American robotics industry posted its second best year ever in 2000 [Robotic Industries Association.
Introduction to Computer and Human Vision Shimon Ullman, Ronen Basri, Michal Irani, Yaron Caspi Assistants: Shai Bagon Shira Kritchman.
USC Viterbi School of Engineering. Alternative CC Robotic Systems.
© sebastian thrun, CMU, CS226 Statistical Techniques In Robotics Sebastian Thrun (Instructor) and Josh Bao (TA)
Cpt_S 483: Introduction to Robotics. Dana 3 RoboSub Robot Club Faunc Robot.
Robot Vision SS 2013 Matthias Rüther ROBOT VISION 2VO 1KU Matthias Rüther, Christian Reinbacher.
Multiple View Geometry in Computer Vision Slides modified from Marc Pollefeys’ online course materials Lecturer: Prof. Dezhen Song.
Computer Vision Group Prof. Daniel Cremers Autonomous Navigation for Flying Robots Lecture 3.1: 3D Geometry Jürgen Sturm Technische Universität München.
Bayesian Filtering for Robot Localization
Computer Vision Group Prof. Daniel Cremers Autonomous Navigation for Flying Robots Lecture 2.1: Recap on Linear Algebra Daniel Cremers Technische Universität.
Definition of an Industrial Robot
Computer Vision Group Prof. Daniel Cremers Autonomous Navigation for Flying Robots Lecture 3.2: Sensors Jürgen Sturm Technische Universität München.
Real-time Dense Visual Odometry for Quadrocopters Christian Kerl
ORCA Robot Simulator HY-475 Autonomous Robot Navigation.
Robotics Daniel Vasicek 2012/04/15.
Navi Rutgers University 2012 Design Presentation
Computer Vision Group Prof. Daniel Cremers Autonomous Navigation for Flying Robots Lecture 6.2: Kalman Filter Jürgen Sturm Technische Universität München.
Autonomous Navigation for Flying Robots Lecture 2.2: 2D Geometry
Quadrotor Landing and Charging Justin Yim. Uses Aerial sensor platform Monitoring Surveillance Exploration Image from:
1 Final Conference, 19th – 23rd January 2015 Geneva, Switzerland RP 15 Force estimation based on proprioceptive sensors for teleoperation in radioactive.
Computer Vision Group Prof. Daniel Cremers Autonomous Navigation for Flying Robots Lecture 2.3: 2D Robot Example Jürgen Sturm Technische Universität München.
Computer Vision Group Prof. Daniel Cremers Autonomous Navigation for Flying Robots Lecture 4.1: Motors and Controllers Jürgen Sturm Technische Universität.
Computer Vision Group Prof. Daniel Cremers Autonomous Navigation for Flying Robots Lecture 4.2 : Feedback Control Jürgen Sturm Technische Universität München.
Introduction to Computer Vision Ronen Basri, Michal Irani, Shimon Ullman Teaching Assistants Tal Amir Ita Lifshitz Michal Yarom.
Computer Vision Group Prof. Daniel Cremers Autonomous Navigation for Flying Robots Lecture 6.1: Bayes Filter Jürgen Sturm Technische Universität München.
Computer Vision Group Prof. Daniel Cremers Autonomous Navigation for Flying Robots Lecture 5.2: Recap on Probability Theory Jürgen Sturm Technische Universität.
Computer Vision Group Prof. Daniel Cremers Autonomous Navigation for Flying Robots Lecture 5.1: State Estimation Jürgen Sturm Technische Universität München.
Real-Time Simultaneous Localization and Mapping with a Single Camera (Mono SLAM) Young Ki Baik Computer Vision Lab. Seoul National University.
Computer Vision Group Prof. Daniel Cremers Autonomous Navigation for Flying Robots Lecture 5.3: Reasoning with Bayes Law Jürgen Sturm Technische Universität.
Computer Vision Group Prof. Daniel Cremers Autonomous Navigation for Flying Robots Lecture 1.2: Why Quadrotors? Jürgen Sturm Technische Universität München.
Chapter 7. Learning through Imitation and Exploration: Towards Humanoid Robots that Learn from Humans in Creating Brain-like Intelligence. Course: Robots.
Autonomous Navigation for Flying Robots Lecture 6.3: EKF Example
Presentation: Shashank Gundu.  Introduction  Related work  Hardware Platform  Experiments  Conclusion.
Probabilistic Robotics Introduction.  Robotics is the science of perceiving and manipulating the physical world through computer-controlled devices.
Introduction to Computer Vision Ronen Basri, Michal Irani, Shimon Ullman Teaching Assistants Tal Amir, Sima Sabah, Netalee Efrat, Nati Ofir, Yuval Bahat,
Quadcopters A CEV Talk. Agenda Flight PreliminariesWhy Quadcopters The Quadcopter SystemStability: The NotionSensors and FusionControl AlgorithmsThe Way.
Robotics & Sensor Fusion for Mechatronics Autonomous vehicle navigation An Obstacle Avoidance Exercise Luca Baglivo, Mariolino De Cecco.
Welcome Scientists Today: Complete Building a Motor Activity Motors Vs. Generators Electricity and Magnetism Mind-Map.
Introduction to Computer Vision Ronen Basri, Michal Irani, Shimon Ullman Primary Teaching Assistants Alon Faktor Ofer Bartal.
Software Narrative Autonomous Targeting Vehicle (ATV) Daniel Barrett Sebastian Hening Sandunmalee Abeyratne Anthony Myers.
Cpt_S 483: Introduction to Robotics. Dana 3 RoboSub Robot Club Research Lab.
Introduction to Computer Vision Ronen Basri, Michal Irani, Shimon Ullman Teaching Assistants Uri Patish Alon Faktor Amir Rosenfeld.
1 Computational Vision CSCI 363, Fall 2012 Lecture 29 Structure from motion, Heading.
Basilio Bona DAUIN – Politecnico di Torino
1 Manipulation by humans and robots CENG782 - Planning of Robotic Manipulation Instructor: Erol Sahin Adapted from slides from..
Manipulation by humans and robots
ME512: Mobile Robotics Last Lecture
Introducing Control in an Open Online Course
Manipulation by humans and robots
Pursuit-Evasion Games with UGVs and UAVs
Zaid H. Rashid Supervisor Dr. Hassan M. Alwan
10/18/16 Autonomous Battery Charging of Quadcopter
Locomotion of Wheeled Robots
Control Group 2 Final Presentation
CSE4421/5324: Introduction to Robotics
Find the velocity of a particle with the given position function
A Short Introduction to the Bayes Filter and Related Models
Presentation transcript:

Computer Vision Group Prof. Daniel Cremers Autonomous Navigation for Flying Robots Lecture 1.1: Welcome Jürgen Sturm Technische Universität München

Course Goal  How can we enable a quadrocopter to fly autonomously?  How can we estimate its state from its sensor readings?  How can we generate control commands to move it towards its goal? Jürgen Sturm Autonomous Navigation for Flying Robots 2

Control Architecture Jürgen Sturm Autonomous Navigation for Flying Robots 3 Localization and Mapping Robot Sensors Actuators Physical World Forces Torques Position Velocity Acceleration Kinematics Dynamics Position Control Trajectory Attitude EstimationAttitude Control RPM EstimationMotor Speed Control Planner Image Credit: Parrot

Course Content by Week 1.Introduction, state-of-the-art 2.Linear algebra, 2D geometry 3.3D geometry and sensors 4.Motors and motor controllers (PID) 5.Probabilistic state estimation 6.Bayes and Kalman filters 7.Visual odometry 8.Cutting edge research results Jürgen Sturm Autonomous Navigation for Flying Robots 4

Course Organization  Course duration: 8 weeks  Video lectures  minutes per week  Interactive exercises  Quizzes, arithmetic problems  Hands-on programming exercises in Python Jürgen Sturm Autonomous Navigation for Flying Robots 5

Upcoming Next Lecture 1.2:  Why quadrotors?  Potential applications Jürgen Sturm Autonomous Navigation for Flying Robots 6