Ellipsoidal bunches by 2D laser shaping Bas van der Geer, Jom Luiten Eindhoven University of Technology DESY Zeuthen 30 November 2006 2) Experimental progress.

Slides:



Advertisements
Similar presentations
Physics of a 10 GeV laser-plasma accelerator stage Eric Esarey HBEB Workshop, Nov , C. Schroeder, C. Geddes, E. Cormier-Michel,
Advertisements

What is not yet possible?
LC-ABD P.J. Phillips, W.A. Gillespie (University of Dundee) S. P. Jamison (ASTeC, Daresbury Laboratory) A.M. Macleod (University of Abertay) Collaborators.
First operation of the TTF2 injector with beam Jean-Paul Carneiro DESY Hamburg TESLA COLLABORATION MEETING DESY Hamburg, 16 Sept 2003.
CALCULATIONS OF THE LCLS INJECTOR USING ASTRA Jean-Paul Carneiro DESY Hamburg ICFA Future Light Sources Sub-Panel Mini Workshop on Start-to-End Simulations.
Brookhaven Science Associates U.S. Department of Energy A Few Comments on the Photoinjector Performance X.J. Wang National Synchrotron Light Source Brookhaven.
C.Limborg-Deprey ERL Workshop, Jefferson March 20th 2005 Optimum electron distribution for space charge dominated beams.
Lecture 3: Laser Wake Field Acceleration (LWFA)
Before aperture After aperture Faraday Cup Trigger Photodiode Laser Energy Meter Phosphor Screen Solenoids Successful Initial X-Band Photoinjector Electron.
Cecile Limborg-Deprey Injector Commissioning September Injector Commissioning Plans C.Limborg-Deprey Gun exit measurements.
Cecile Limborg-Deprey Injector October Injector Physics C.Limborg-Deprey Diagnostics and Commissioning GTL measurements.
Simulation studies of the e-beams for Renkai Li and Juhao Wu 5/20/2014 ALD Review.
Recent developments for the LCLS injector Feng Zhou SLAC Other contributors: Brachmann, Decker, Ding, Emma, Gilevich, Huang, Iverson, Loos, Raubenheimer,
Siegfried Schreiber, DESY The TTF Laser System Laser Material Properties Conclusion? Issues on Longitudinal Photoinjector.
30. Nov I.Will, G. Klemz, Max Born Institute: Optical sampling system Optical sampling system for detailed measurement of the longitudinal pulse.
FEL Beam Dynami cs FEL Beam Dynamics T. Limberg FEL driver linac operation with very short electron bunches.
POSTECH PAL Development of S-band RF gun and advanced diagnostics in PAL 박용운 (Yong Woon Park, Ph.D.) 포항 가속기 연구소 (Pohang Accelerator Laboratory, PAL) 포항공과대학교.
A Polarized Electron PWT Photoinjector David Yu DULY Research Inc. California, USA SPIN2004, Trieste, Italy 10/14/04.
I.V. Bazarov, Multivariate Optimization of High Brightness DC Gun Photoinjector, UCLA Workshop, 8-10 November CHESS / LEPP ERL DC Gun Injector.
Dielectric Wakefield Accelerator for an X-ray FEL User Facility
Steve LidiaICFA Workshop, Chia LagunaJuly, 2002 Flat Beam Photoinjectors for Ultrafast Synchrotron Radiation Sources Steve Lidia Lawrence Berkeley National.
Low Emittance RF Gun Developments for PAL-XFEL
TTF2 Start-to-End Simulations Jean-Paul Carneiro DESY Hamburg TESLA COLLABORATION MEETING DESY Zeuthen, 22 Jan 2004.
IRPSS: A Green’s Function Approach to Modeling Photoinjectors Mark Hess Indiana University Cyclotron Facility & Physics Department *Supported by NSF and.
Compton based Polarized Positrons Source for ILC V. Yakimenko Brookhaven National Laboratory September 12, 2006 RuPAC 2006, Novosibirsk.
High Current Electron Source for Cooling Jefferson Lab Internal MEIC Accelerator Design Review January 17, 2014 Riad Suleiman.
Recent Experiments at PITZ ICFA Future Light Sources Sub-Panel Mini Workshop on Start-to-End Simulations of X-RAY FELs August 18-22, 2003 at DESY-Zeuthen,
David H. Dowell and Friends SLAC National Accelerator Laboratory David H. Dowell and Friends SLAC National Accelerator Laboratory The LCLS Gun ICFA Beam.
Beam Dynamics and FEL Simulations for FLASH Igor Zagorodnov and Martin Dohlus Beam Dynamics Meeting, DESY.
3D Laser pulse shaping for photoinjector applications Yuelin Li Accelerator Systems Division and X-ray Science Division Argonne National Laboratory
CLARA Gun Cavity Optimisation NVEC 05/06/2014 P. Goudket G. Burt, L. Cowie, J. McKenzie, B. Militsyn.
Interpretation of beam current experimental results in HoBiCaT Gun0 Vladimir Volkov.
laser-cooled electron sources experiments / simulations
Field enhancement coefficient  determination methods: dark current and Schottky enabled photo-emissions Wei Gai ANL CERN RF Breakdown Meeting May 6, 2010.
Advanced Energy Systems Inc. P.O. Box 7455, Princeton, NJ Phone:(609) Fax:(609) Jangho.
R&D opportunities for photoinjectors Renkai Li 10/12/2015 FACET-II Science Opportunities Workshops October, 2015 SLAC National Accelerator Laboratory.
LDRD: Magnetized Source JLEIC Meeting November 20, 2015 Riad Suleiman and Matt Poelker.
Argonne National Laboratory is managed by The University of Chicago for the U.S. Department of Energy Quasi 3D ellipsoidal laser pulse by pulse tailoring.
Velocity bunching from S-band photoinjectors Julian McKenzie 1 st July 2011 Ultra Bright Electron Sources Workshop Cockcroft Institute STFC Daresbury Laboratory,
July LEReC Review July 2014 Low Energy RHIC electron Cooling Jorg Kewisch, Dmitri Kayran Electron Beam Transport and System specifications.
Simulation challenges for laser-cooled electron sources Bas van der Geer Marieke de Loos Pulsar Physics The Netherlands Jom Luiten Edgar.
People Xavier Stragier Marnix van der Wiel (AccTec) Willem op ‘t Root Jom Luiten Walter van Dijk Seth Brussaard Walter Knulst (TUDelft) Fred Kiewiet Eddy.
UCLA Claudio Pellegrini UCLA Department of Physics and Astronomy X-ray Free-electron Lasers Ultra-fast Dynamic Imaging of Matter II Ischia, Italy, 4/30-5/3/
Awake electron beam requirements ParameterBaseline Phase 2Range to check Beam Energy16 MeV MeV Energy spread (  ) 0.5 %< 0.5 % ? Bunch Length (
1 Short Electron Pulses from RF Photoinjectors Massimo Ferrario INFN - LNF.
Prospects for generating high brightness and low energy spread electron beams through self-injection schemes Xinlu Xu*, Fei Li, Peicheng Yu, Wei Lu, Warren.
J. Corlett. June 16, 2006 A Future Light Source for LBNL Facility Vision and R&D plan John Corlett ALS Scientific Advisory Committee Meeting June 16, 2006.
Ultra-short electron bunches by Velocity Bunching as required for Plasma Wave Acceleration Alberto Bacci (Sparc Group, infn Milano) EAAC2013, 3-7 June,
C/S band RF deflector for post interaction longitudinal phase space optimization (D. Alesini)
J.Maxson, D. Cesar, P. Musumeci UCLA
ELI PHOTOINJECTOR PARAMETERS: PRELIMINARY ANALYSIS AND SIMULATIONS C. RONSIVALLE.
B. Marchetti R. Assmann, U. Dorda, J. Grebenyuk, Y. Nie, J. Zhu Acknowledgements: C. Behrens, R. Brinkmann, K. Flöttmann, M. Hüning,
Bunch Shaping for Future Dielectric Wakefield Accelerators W. Gai Mini-Workshop on Deflecting/Crabbing RF Cavity Research and application in Accelerators.
S.M. Polozov & Ko., NRNU MEPhI
Preliminary result of FCC positron source simulation Pavel MARTYSHKIN
8-10 June Institut Henri Poincaré, Paris, France
Space-Charge Effects in RF Photoinjectors
Tunable Electron Bunch Train Generation at Tsinghua University
Beyond the RF photogun Jom Luiten Seth Brussaard
MIT Compact X-ray Source
Beam Dynamics in a Spilt SRF-Gun
What did we learn from TTF1 FEL?
Injector: What is needed to improve the beam quality?
Superconducting High Brightness RF Photoinjector Design
Advanced Research Electron Accelerator Laboratory
Z. Huang LCLS Lehman Review May 14, 2009
Selected simulations for XFEL photo injector
Modified Beam Parameter Range
Electron beam dynamics
Injector for the Electron Cooler
Presentation transcript:

Ellipsoidal bunches by 2D laser shaping Bas van der Geer, Jom Luiten Eindhoven University of Technology DESY Zeuthen 30 November ) Experimental progress 1) Why pancakes do not work with 1nC and 40–60 MV/m Jom Luiten Bas van der Geer work as goodas 3D ellipsoids

Waterbags Transverse phase-space –No space-charge induced emittance degradation –No ‘slice’ dependence –O.J. Luiten, S.B. van der Geer et al, PRL , (2004). –Confirmed by J. Rosenzweig and C. Limborg in NIM-A 557 (2006) Longitudinal phase-space –Ideal for linear compression –Manipulation possible at low energy –Energy spread can be recovered –S.B. van der Geer et al, PRST-AB, 9, (2006)

Transverse (5-D) brightness: Brightness

Source brightness Options (at fixed Q): Lower Temperature TUltra Cold Plasma cathode B.J. Claessens et al., PRL 95, (2005) Reduce Surface area ACarbon Nanotubes Needle cathodes … Reduce Pulse duration τ Pancake regime

Longitudinal phase space density Long pulsePancake 3 ps30 fs 1 nC 100 pC ~100 A/mm 2~ 1 kA/mm 2 (Both with A=π mm 2 ) z Energy Pancake Long pulse Thermal spread Longitudinal phase-space at cathode

The problem is not the high space charge density... Gaussian bunch Brightness degradation

pxpx x Gaussian bunch Space charge forces: Non-linear Slice-dependent... the real problem is the space charge density distribution.

pxpx x Gaussian bunch Fighting the symptoms: Emittance compensation (B. Carlsten) Optimized transverse profile (L. Serafini) Uniform temporal & radial profile (DESY,...)...

Gaussian bunch Waterbag bunch pxpx x Space charge forces: Non-linear Slice-dependent Space charge forces: Linear Slice-independent Thermal-emittance-limited beam! 2004: Fundamental solution

History of uniformly charged ellipsoids 1929Have linear fields in all three coordinates O. D. Kellogg, Foundations of Potential Theory (Springer-Verlag, 1929). 1965Ellipsoids with uniform mass collapse into a disk (astrophysics) C.C. Lin et al., Astrophys. J. 142, 1431 (1965). Decades of use as idealized beams … 1997Pancakes evolve into approximate waterbags L. Serafini, AIP Conf. Proc. 413, 321 (1997) 2004Fundamental solution and practical recipe O.J. Luiten, S.B. van der Geer et al, PRL , (2004). O.J. Luiten, S.B. van der Geer et al, EPAC (2004).

History of uniformly charged ellipsoids 1929Have linear fields in all three coordinates O. D. Kellogg, Foundations of Potential Theory (Springer-Verlag, 1929). 1965Ellipsoids with uniform mass collapse into a disk (astrophysics) C.C. Lin et al., Astrophys. J. 142, 1431 (1965). Decades of use as idealized beams … 1997Pancakes evolve into approximate waterbags L. Serafini, AIP Conf. Proc. 413, 321 (1997) 2004Fundamental solution and practical recipe O.J. Luiten, S.B. van der Geer et al, PRL , (2004). O.J. Luiten, S.B. van der Geer et al, EPAC (2004). 2006Well received in the accelerator community J.B. Rosenzweig et al., NIM-A 557 (2006), Emittance compensation … C. Limborg et al., NIM-A 557 (2006), Optimum electron distributions … S.B. van der Geer et al, PRST-AB, 9, (2006), Longitudinal …...

2D Waterbag bunch recipe Femtosecond photoexcitation of pancake bunch Half-sphere transverse laser intensity profile Temporal laser profile is irrelevant Automatic evolution into 3D, uniform ellipsoid fs laser

Ellipsoid creation How to Realize Uniform Three-Dimensional Ellipsoidal Electron Bunches O.J. Luiten, S.B. van der Geer et al, PRL , (2004).

1.5 cell, 3 GHz rf-photogun + focusing solenoid E acc = 92 MV/m Q = 100 pC Waterbag bunch in a realistic field z c = 0.9 m, E = 4.5 MeV O.J. Luiten, S.B. van der Geer et al, EPAC (2004).

Waterbag bunch in a realistic field Confirmed at higher energies –Compatible with SPARC emittance compensation, 85 MeV J. Rosenzweig et al., NIM-A 557 (2006), p. 87. –50% improvement on transverse emitance for LCLS, 63 MeV C. Limborg et al., NIM-A 557 (2006), p Thermal emittance! O.J. Luiten, S.B. van der Geer et al, EPAC (2004). 4 MeV

Thermal emittance! 10 fs First waterbag bunch in a realistic field O.J. Luiten, S.B. van der Geer et al, EPAC (2004). I=50 A

Longitudinal compression ~0.4 m Laser rf φ S.B. van der Geer et al, PRST-AB, 9, (2006), 3.5 MeV 0.7– 2.0 kA 30– 100 fs 0.7– 1.5 μm

2D PITZ Limitations of 2D ‘pancake’ shaping: Laser-pulse duration<< Asymptotic bunch length Fields of image charges<< Acceleration field PITZ: 1 nC, 50 MV/m, R=1 mm: Pulse duration: 30 fs<< 25 psOK Image charges: 36 MV/m<< 50 MV/mQuestionable

2D PITZ Settings: 50 MV/m uniform, 1 nC, R=1 mm, 2D shaping of 30 fs ‘pancake’ GPT Charge [nC] RMS Emittance [micron] Pancake

3D PITZ Settings: 50 MV/m uniform, 1 nC, R=1 mm, 3D shaping of 3 ps ellipsoid Pancake 3D

Emission:3D shaping2D shapingHighly non-linear fields! Lower charge densityMaintain short bunch Long pulse lengthHigh acceleration field 3D versus 2D shaping 1.5 ps: 10 μm15 fs: 1 nm

3D PITZ Settings: 50 MV/m uniform, 1 nC, R=1 mm, 3D shaping of 10 ps ellipsoid Pancake 3D: 3 ps 3D: 10 ps

3D PITZ Settings: 50 MV/m uniform, 1 nC, R=1 mm, 3D shaping of 10 ps ellipsoid Pancake 3D: 3 ps 3D: 10 ps GPT Charge [nC] RMS Emittance [micron] Pancake 100 MV/m

Next Experimental progress at Eindhoven University of Technology Experimental progress at Eindhoven University of Technology Jom Luiten

2D ‘pancake’ shaping Ingredients: Ti:Sapphire 30 fs laser Transverse shaping only Ti:Saphire 30 fs laser Colinear THG 800nm → 266 nm Spatial filtering: 800 nm gaussian π shaper: Gauss → half-sphere UVSphereGauss

800 nm after spatial filtering

ideal π Shaper Laser intensity radius 01 mm π shaper Input:Gaussian beam Output:Half-sphere laser intensity profile (without losses)

0.15 mm BBO SHG 2.5 mm BBO Delay Zero order retardation plate 0.04 mm BBO THG RR+B R+B+UV Incident beam: 1 kHz, 30 fs 800 nm, 1 mJ/pulse UV beam: 1 kHz, 30 fs 266 nm Conversion efficiency ~ 10% Colinear 3 rd harmonic generation

Cooling channel bucking magnet Tube for thermoheater Stainless steel vacuum vessel 1.5 cell S-band cavity: Clamped design

f 0 = GHz f 0 = GHz Absorption > 96 % Q = mode  -mode 1.5 cell cavity: measured resonances Lorentzian fits

1.5 cell cavity: field profile π-mode Superfish ♦ measured Design and machining precision better than 5 μm

Cavity training First results (November 2006) 15 2 Hz, 10 5 rf pulses 65 MV/m

END