The Growth of Galaxies: Ways Forward toward a More Robust Understanding at High Redshift Mark Dickinson (NOAO)

Slides:



Advertisements
Similar presentations
Elodie GIOVANNOLI Laboratoire d’Astrophysique de Marseille, FRANCE Advisor : Veronique BUAT Collaborators : Denis Burgarella, Stefan Noll Spectral energy.
Advertisements

Extremely Large Telescopes and Surveys Mark Dickinson, NOAO.
Motivation 40 orbits of UDF observations with the ACS grism Spectra for every source in the field. Good S/N continuum detections to I(AB) ~ 27; about 30%
15 years of science with Chandra– Boston 20141/16 Faint z>4 AGNs in GOODS-S looking for contributors to reionization Giallongo, Grazian, Fiore et al. (Candels.
Kinematics/Dynamics  Chemistry/dust  Stellar populations  Searches for z ~ 6-7 « Hot » scientific researches at VLT in cosmology Mass Galaxy formation/gas.
Dust and Stellar Emission of Nearby Galaxies in the KINGFISH Herschel Survey Ramin A. Skibba Charles W. Engelbracht, et al. I.
The MIR Template Spectrum of Star-Forming Galaxies A SINGS Perspective JD Smith.
Star formation and submm/far- IR luminous galaxies Andrew Blain Caltech 26 th May 2005 Kyoto COSMOS meeting.
A Bolometric Approach To Galaxy And AGN Evolution. L. L. Cowie Venice 2006 (primarily from Wang, Cowie and Barger 2006, Cowie and Barger 2006 and Wang.
Eight billion years of galaxy evolution Eric Bell Borch, Zheng, Wolf, Papovich, Le Floc’h, & COMBO-17, MIPS, and GEMS teams Venice
Star formation at high redshift (2 < z < 7) Methods for deriving star formation rates UV continuum = ionizing photons (dust obscuration?) Ly  = ionizing.
AGN and Quasar Clustering at z= : Results from the DEEP2 + AEGIS Surveys Alison Coil Hubble Fellow University of Arizona Chandra Science Workshop.
SFR and COSMOS Bahram Mobasher + the COSMOS Team.
The Near Infrared Background Excess and Star Formation in the HUDF Rodger Thompson Steward Observatory University of Arizona.
30 March 2006 Galaxies and Structures through Cosmic Times, Venice1 EXOs: Candidate AGN at z ≥ 6 and intermediate-z evolved populations Anton Koekemoer.
Ultra-Luminous Infrared Galaxies at high redshift - The Spitzer perspective E. Le Floc’h (Steward Observatory, University of Arizona) * Spitzer-NDWFS :
Cambridge, September 9th 2004 Spitzer discovery of luminous infrared galaxies at 1
Dusty star formation at high redshift Chris Willott, HIA/NRC 1. Introductory cosmology 2. Obscured galaxy formation: the view with current facilities,
Venice – March 2006 Discovery of an Extremely Massive and Evolved Galaxy at z ~ 6.5 B. Mobasher (STScI)
Astrophysics from Space Lecture 8: Dusty starburst galaxies Prof. Dr. M. Baes (UGent) Prof. Dr. C. Waelkens (KUL) Academic year
Alexandra Pope (UMass Amherst) JWST Workshop – STScI Baltimore June 8, 2011 Mid-Infrared Observation of High Redshift Galaxy Evolution.
Renzini Ringberg The cosmic star formation rate from the FDF and the Goods-S Fields R.P. Saglia – MPE reporting work of/with R. Bender, N.
The Evolution of Quasars and Massive Black Holes “Quasar Hosts and the Black Hole-Spheroid Connection”: Dunlop 2004 “The Evolution of Quasars”: Osmer 2004.
Modern Quasar SEDs Zhaohui Shang ( Tianjin Normal University ) Kunming, Feb
Past, Present and Future Star Formation in High Redshift Radio Galaxies Nick Seymour (MSSL/UCL) 22 nd Nov Powerful Radio Galaxies.
RADIO OBSERVATIONS IN VVDS FIELD : PAST - PRESENT - FUTURE P.Ciliegi(OABo), Marco Bondi (IRA) G. Zamorani(OABo), S. Bardelli (OABo) + VVDS-VLA collaboration.
The Formation and Evolution of Galaxies What were the first sources of light in the Universe? How were luminous parts of galaxies assembled? How did the.
Conference “Summary” Alice Shapley (Princeton). Overview Multitude of new observational, multi-wavelength results on massive galaxies from z~0 to z>5:
The Extremely Red Objects in the CLASH Fields The Extremely Red Galaxies in CLASH Fields Xinwen Shu (CEA, Saclay and USTC) CLASH 2013 Team meeting – September.
16 micron Imaging in the GOODS fields with the Spitzer IRS Harry Teplitz (Spitzer Science Center)
Vandana Desai Spitzer Science Center with Lee Armus, Colin Borys, Mark Brodwin, Michael Brown, Shane Bussmann, Arjun Dey, Buell Jannuzzi, Emeric Le Floc’h,
Deciphering the CIB 12 Oct 2012 Banyuls MODELING COUNTS AND CIBA WITH MAIN SEQUENCE AND STARBURST GALAXIES Matthieu Béthermin CEA Saclay In collaboration.
Francisco Javier Castander Serentill Institut d’Estudis Espacials de Catalunya (IEEC) Institut de Ciències de l’Espai (ICE/CSIC) Barcelona Exploiting the.
The Environmental Effect on the UV Color-Magnitude Relation of Early-type Galaxies Hwihyun Kim Journal Club 10/24/2008 Schawinski et al. 2007, ApJS 173,
Bruno Altieri | Toledo 2011 | 23 Nov | vg #1 Star Formation from Herschel deep surveys B. Altieri, on behalf of PEP (PACS Extragalactic Probe, PI.
Scaling Relations in HI Selected Star-Forming Galaxies Gerhardt R. Meurer The Johns Hopkins University Gerhardt R. Meurer The Johns Hopkins University.
X-ray clues on the nature of sub-mm galaxies I.Georgantopoulos INAF/OABO A Comastri INAF/OABO E. Rovilos MPE.
The Accretion History of SMBHs in Massive Galaxies Kate Brand STScI Collaborators: M. Brown, A. Dey, B. Jannuzi, and the XBootes and Bootes MIPS teams.
An Evolutionary Model of Submillimeter Galaxies Sukanya Chakrabarti NSF Fellow CFA.
Understand Galaxy Evolution with IR Surveys: Comparison between ISOCAM 15-  m and Spitzer 24-  m Source Counts as a Tool Carlotta Gruppioni – INAF OAB.
Delphine Marcillac Moriond 2005 When UV meets IR... 1 IR properties of distant IR galaxies Delphine Marcillac (PhD student) Supervisor : D. Elbaz In collaboration.
How do galaxies accrete their mass? Quiescent and star - forming massive galaxies at high z Paola Santini Roman Young Researchers Meeting 2009 July 21.
Cosmos Survey PI Scoville HST 590 orbits I-band 2 deg. 2 !
A multi-band view on the evolution of starburst merging galaxies A multi-band view on the evolution of starburst merging galaxies Yiping Wang (王益萍) Purple.
A Steep Faint-End Slope of the UV LF at z~2-3: Implications for the Missing Stellar Problem C. Steidel ( Caltech ) Naveen Reddy (Hubble Fellow, NOAO) Galaxies.
How do galaxies accrete their mass? Quiescent and star - forming massive galaxies at high z Paola Santini THE ORIGIN OF GALAXIES: LESSONS FROM THE DISTANT.
Obscured Star Formation in Small Galaxies out to z
Formation and evolution of early-type galaxies Pieter van Dokkum (Yale)
Evidence for a Population of Massive Evolved Galaxies at z > 6.5 Bahram Mobasher M.Dickinson NOAO H. Ferguson STScI M. Giavalisco, M. Stiavelli STScI Alvio.
Constraints on a Universal IMF1 from the Entire Stellar Population2,3
Big Bang f(HI) ~ 0 f(HI) ~ 1 f(HI) ~ History of Baryons (mostly hydrogen) Redshift Recombination Reionization z = 1000 (0.4Myr) z = 0 (13.6Gyr) z.
AGN / Starbursts in the very dusty systems in Bootes Kate Brand + the Bootes team NOAO Lijiang, August 2005.
KASI Galaxy Evolution Journal Club A Massive Protocluster of Galaxies at a Redshift of z ~ P. L. Capak et al. 2011, Nature, in press (arXive: )
Elizabeth Stanway (UW-Madison) Andrew Bunker (Exeter) Star Forming Galaxies at z>5: Properties and Implications for Reionization With: Richard Ellis (Caltech)
Star Formation History of the Hubble Ultra Deep Field Rodger Thompson Steward Observatory University of Arizona.
Cosmic Dust Enrichment and Dust Properties Investigated by ALMA Hiroyuki Hirashita ( 平下 博之 ) (ASIAA, Taiwan)
Sample expanded template for one theme: Physics of Galaxy Evolution Mark Dickinson.
J. L. Higdon, S. J. U. Higdon, D. Weedman, J. Houck (Cornell) B. T. Soifer (Caltech), B. Jannuzi, A. Dey, M. Brown (NOAO) E. Le Floc’h, & M. Rieke (Arizona)
High Redshift Galaxies/Galaxy Surveys ALMA Community Day April 18, 2011 Neal A. Miller University of Maryland.
The Genesis and Star Formation Histories of Massive Galaxies Sept 27, 2004 P. J. McCarthy MGCT Carnegie Observatories.
1 Lei Bai George Rieke Marcia Rieke Steward Observatory Infrared Luminosity Function of the Coma Cluster.
Lightcones for Munich Galaxies Bruno Henriques. Outline 1. Model to data - stellar populations and photometry 2. Model to data - from snapshots to lightcones.
Galaxy Evolution and WFMOS
Evidence for a Population of high redshift Submm Galaxies
Nobunari Kashikawa (National Astronomical Observatory of Japan)
The µJy Sky and the Radio-FIR relation vs. z
The Presence of Massive Galaxies at z>5
Extra-galactic blank field surveys with CCAT
HERSCHEL and Galaxies/AGN “dust and gas”
Black Holes in the Deepest Extragalactic X-ray Surveys
Presentation transcript:

The Growth of Galaxies: Ways Forward toward a More Robust Understanding at High Redshift Mark Dickinson (NOAO)

GOODS: Great Observatories Origins Deep Survey 3 November 2006Mark Dickinson - MGCT2 The demographics of galaxy growth Star formation Stellar mass Galaxy merging

GOODS: Great Observatories Origins Deep Survey 3 November 2006Mark Dickinson - MGCT2 Cosmic star formation: a plethora of measurements… Hopkins & Beacom 2006

GOODS: Great Observatories Origins Deep Survey 3 November 2006Mark Dickinson - MGCT2 The global history of cosmic star formation The “cosmic” SFR(z): the comoving average SFR from galaxies, per unit volume, over cosmic time and redshift. What does it relate to? –Growth of stellar mass in galaxies (  (M*) vs. z) –Depletion of gas (  (HI) vs. z) –Build-up of metals (  (Z) vs. z) –Supernova rates vs. z –Ionizing background radiation –Extragalactic background light

GOODS: Great Observatories Origins Deep Survey 3 November 2006Mark Dickinson - MGCT2 Introduction, cont’d The era of multiwavelength measurements –UV –Mid-IR –Far-IR –Submm –Radio –Nebular emission lines –X-ray General challenges: –No one observable sees it all –Interpreting observables: model dependence –The IMF –Stellar population/evolution issues

GOODS: Great Observatories Origins Deep Survey 3 November 2006Mark Dickinson - MGCT2 SFR(z) vs.  *(z): tension at all redshifts? SFR(z)  stars (z) Derived SFR(z) may overproduce derived W*(z) at most redshifts Hopkins & Beacom 2006; see also Chary & Elbaz 2001; Dickinson et al. 2003; Ferguson et al. 2003

GOODS: Great Observatories Origins Deep Survey 3 November 2006Mark Dickinson - MGCT2 Stellar mass density, z~5 to 6 Stark et al. Eyles et al. Wiklind et al.  * (reion.), 6 < z < 10, C=30, f esc =1 Stars whose formation produces sufficient reionizing photons at 6<z<10 for 100% Lyman contin. escape fraction (Madau, Haardt & Rees 1999) Estimates for  * at z=5-6 are 5-50x smaller than at z~2-3 Yan et al. 2006

GOODS: Great Observatories Origins Deep Survey 3 November 2006Mark Dickinson - MGCT2 SFR demographics: GALEX UV at z < 1.2 Schiminovich et al Arnouts et al HDF N+S, Steidel’99 GALEX

GOODS: Great Observatories Origins Deep Survey 3 November 2006Mark Dickinson - MGCT2 Deep ISO surveys Chary & Elbaz 2001: Modeled deep number counts from ISO 15, 90, 170  m, SCUBA 850  m surveys, and the CIRB Minimal redshift information; small statistics Features: LIRGs dominate SFR at z~1 Fairly flat SFR(z) from 0.8 < z < 2; Turnover pushed toward lower z.

GOODS: Great Observatories Origins Deep Survey 3 November 2006Mark Dickinson - MGCT2 Into the Spitzer era Vastly improved statistics Deeper data Redshifts! Le Floc’h et al. 2005

GOODS: Great Observatories Origins Deep Survey 3 November 2006Mark Dickinson - MGCT2 Evolution of the IR luminosity density, 0 < z < 1 0 < z < 1:  UV (z) ~ (1+z) 2.5 (Schiminovich et al. 2005)  IR (z) ~ (1+z) 3.9 (Le Floc’h et al. 2005) Infrared/UV emitted energy from star formation: z=0 ~1.5 : 1 z=1 ~ 4 : 1 LIRGs ULIRGs Normal Galaxies Total IR UV Le Floc’h et al. 2005

GOODS: Great Observatories Origins Deep Survey 3 November 2006Mark Dickinson - MGCT2 Challenges: going deep enough 24  m-derived IR LFs, z < 1.2: Le Floc’h et al Spitzer wide surveys reach L IR ~ L o at z~1, ~ L o at z~2. Potentially large and uncertain LF extrapolation to total energy density: Have we really converged on  (SFR) at z ~ 1 ? Deep surveys (GOODS) cover small area and volume (cosmic variance).

GOODS: Great Observatories Origins Deep Survey 3 November 2006Mark Dickinson - MGCT2 GOODS MIPS 24  m ~  m sources with spectroscopic z GOODS MIPS data detects dust + PAH emission from LIRGs at z ~ 2-3

GOODS: Great Observatories Origins Deep Survey 3 November 2006Mark Dickinson - MGCT2 GOODS MIPS 24  m At 1 < z < 2.5, MIPS 24  m is ~10 to 1000x more sensitive to star formation than are deep VLA or SCUBA surveys.

GOODS: Great Observatories Origins Deep Survey 3 November 2006Mark Dickinson - MGCT2 z ~ 2-3: the ULIRG era? Chary et al. - Work in progress! Caveats: Spectroscopic (and photo-?) z samples incomplete) Templates for MIR- to-SFR conversion uncertain, esp. at higher L and higher z AGN identification uncertain SF component of AGN IR emission uncertain

GOODS: Great Observatories Origins Deep Survey 3 November 2006Mark Dickinson - MGCT2 Ways forward: SF demographics Forthcoming: –Deeper MIPS surveys over wider areas: Far-IR Legacy Survey; S-COSMOS Deeper at 24  m: hopefully below the LF knee at z~1; possibly convergence at z~2 Multiple fields: controlling cosmic variance Desperately needed: –Redshifts!! Especially for dusty galaxies/AGN at z > 1. Mid-IR K-corrections potentially very strong with small  z. Many of the galaxies which may dominate  (SFR) at z~2: –are not UV bright –have K > 20 Multiplexed NIR spectroscopy and wild heroism? Let’s hope so… Open issues: –AGN contribution to IR emission –Star formation contribution from those AGN –Mid-IR to SFR conversions

GOODS: Great Observatories Origins Deep Survey 3 November 2006Mark Dickinson - MGCT2 Challenges: MIR/SFR calibration rest frame 12  m at z ~ 1 z ~ 0 IRAS BGS 12  m L 12 ~ L IR < z < 1.2 GOODS 24  m vs. 1.4 GHz 20 cm fluxes -> LIR assuming z~0 radio/FIR correlation (Yun et al. 2001) MIPS 24  m -> L(12  m) with minimal k-correction Significant number of radio-loud outliers at z~1 (e.g., Donley et al. 2005) L 1.4GHz > WHz -1 : 38% outliers (>7% of z~1 sources with f(24  m) > 20  Jy) z=0 relation

GOODS: Great Observatories Origins Deep Survey 3 November 2006Mark Dickinson - MGCT2 PAH emission and SF SWIRE+SDSS: Tight 8  m / 70  m correlation, but with strong Z dependence 12+log(O/H) > 8.8: L 8 ~ L IR 0.9,  < dex Lower O/H -> low L 8 /L 70 Trend starts just below Z solar Monekiewicz et al. 2006

GOODS: Great Observatories Origins Deep Survey 3 November 2006Mark Dickinson - MGCT2 Challenges: calibrating 24  m/SFR at z~2 MIPS: =125  Jy, =1.9, and CE01 templates: = 1.7e12 L o, ~ 300 M o /yr UV continuum + reddening: ~ 220 M o /yr Radio: stacked VLA data = 17  Jy = 2e12 L o, ~ 340 M o /yr Sub-mm: stacked = 1.0 mJy (5  ) = 1.0e12 L o, ~ 170 M o /yr X-ray: stacked 8.5  soft-band detection, no significant hard-band. Far below expected AGN level. = M o /yr (Ranalli 2003, Persic 2004 conversions) On average, multiwavelength SFR tracers agree reasonably well with expectations from low-z correlations, templates & analogs. Daddi et al. 2005

GOODS: Great Observatories Origins Deep Survey 3 November 2006Mark Dickinson - MGCT2 Object by object SF comparisons at z~2 Daddi et al. in prep.Reddy et al. in prep. 24  m vs. H  24  m vs. radio

GOODS: Great Observatories Origins Deep Survey 3 November 2006Mark Dickinson - MGCT2 Submm emission, dust temperatures, etc. “warm” CE01“cool” CE01 (+ extra mid-IR extinction) 850mm too bright relative to radio or 24mm when compared With “warm” local ULIRG templates appropriate for these large L(IR). Pope et al. 2006

GOODS: Great Observatories Origins Deep Survey 3 November 2006Mark Dickinson - MGCT2 Implied dust temperatures Chapman et al  m/20cm flux ratios suggest cooler dust temperatures for the implied FIR luminosities, compared to the local L IR -T correlation.

GOODS: Great Observatories Origins Deep Survey 3 November 2006Mark Dickinson - MGCT2 Ways forward: SF calibration Measure true thermal far-IR dust emission: luminosities and temperatures –Deeper, wider Spitzer 70  m surveys –Herschel (  m) –SHARC2, SCUBA2, etc. (e.g  m) –ALMA Improved cross-calibration & diagnostic checks of SF: –Mid-IR vs. far-IR, submm, radio –Extensive mid-IR spectroscopy - Spitzer IRS

MIPS 24  m M81 = NGC  m

H  + R M81 = NGC 3031 H  + R

GOODS: Great Observatories Origins Deep Survey 3 November 2006Mark Dickinson - MGCT2 24  m rest frame emission traces star formation Calzetti et al M51 Calzetti et al. in prep.

GOODS: Great Observatories Origins Deep Survey 3 November 2006Mark Dickinson - MGCT2 600s GTO exposure Ultradeep 70  m imaging Frayer et al new MIPS Legacy Survey 10800s GO exposure, ~10’x10’

GOODS: Great Observatories Origins Deep Survey 3 November 2006Mark Dickinson - MGCT2 Spitzer Far-IR Legacy Survey GOODS-S E-CDFS: 30’x30’ EGS/AEGIS: 90’x10’ ~2000 arcmin 2 total 10x current GOODS 70  m 6.5x deep GOODS 24  m Sensitivities: ~3 70  m ~30  24  m L IR ~ L o at z=1 L IR ~ L o at z= arcmin 2 in GOODS-N

GOODS: Great Observatories Origins Deep Survey 3 November 2006Mark Dickinson - MGCT2

GOODS: Great Observatories Origins Deep Survey 3 November 2006Mark Dickinson - MGCT2 Deep 70  m matched to radio and submm 450  m 70  m 70  m survey limit well matched to very deep SCUBA  m surveys and to very deep 20cm VLA surveys: LIRGs at z~1 ULIRGs at z~2 24  m survey will reach “near-GOODS” depth over much larger areas: Normal galaxies at z~1 LIRGs at z~2

GOODS: Great Observatories Origins Deep Survey 3 November 2006Mark Dickinson - MGCT2 70  m constrains dust properties at high redshift 70  m/24  m: warm dust properties 450  m/70  m: bulk dust temperatures SCUBA-2! Dusty AGN

GOODS: Great Observatories Origins Deep Survey 3 November 2006Mark Dickinson - MGCT2 SFR(z): the first 2 Gyr At z > 3, UV is (almost) the only game in town: no direct measurement of reprocessed energy for most galaxies (yet). –Spitzer, Herschel, and near-term submm facilities can only detect hyperluminous (unlensed) objects –ALMA: L IR = Lo at z=6 in ~10 hours –JWST: H  at z < 6.5 Difficulties: –Uncertain extinction inferred from UV spectral slope alone. –Apparently very steep (but uncertain) UV LF slopes -> very large corrections to total luminosity density

GOODS: Great Observatories Origins Deep Survey 3 November 2006Mark Dickinson - MGCT2 Mass from light

GOODS: Great Observatories Origins Deep Survey 3 November 2006Mark Dickinson - MGCT2 Stellar mass: stellar population issues The IMF: The IMF almost certainly flattens/turns over at low mass. We use Salpeter because we’re lazy. Low-mass turnover is probably not a big problem: –It affects M*/L more or less uniformly at all wavelengths, including both stellar mass and SFR indicators. –Local evidence points to nearly universal low-mass IMF IMF slope at intermediate/high mass is a big deal! –Affects different SFR indicators differently –Changes luminosity evolution of stellar populations Fortunately, so far there’s not much convincing evidence for IMF slope variations.

GOODS: Great Observatories Origins Deep Survey 3 November 2006Mark Dickinson - MGCT2 SFR(z) vs.  *(z): tension at all redshifts? SFR(z)  stars (z) Derived SFR(z) may overproduce derived W*(z) at most redshifts Hopkins & Beacom 2006; see also Chary & Elbaz 2001; Dickinson et al. 2003; Ferguson et al. 2003

GOODS: Great Observatories Origins Deep Survey 3 November 2006Mark Dickinson - MGCT2 Stellar population issues (2) Star formation histories: Broad band SEDs are largely degenerate to a variety of possible past SF histories, which can lead to substantial M/L variations. Modeling often assume smooth, monotonic SF histories, but recent SF can mask hide high-M/L starlight from older stars. IRAC improves but does not eliminate this, especially for bluer, star-forming galaxies.

GOODS: Great Observatories Origins Deep Survey 3 November 2006Mark Dickinson - MGCT2 Mass from light

GOODS: Great Observatories Origins Deep Survey 3 November 2006Mark Dickinson - MGCT2 Composite stellar populations Significant mass from an older stellar population could be hidden by ongoing star formation. Papovich et al. 2001

GOODS: Great Observatories Origins Deep Survey 3 November 2006Mark Dickinson - MGCT2

GOODS: Great Observatories Origins Deep Survey 3 November 2006Mark Dickinson - MGCT2

GOODS: Great Observatories Origins Deep Survey 3 November 2006Mark Dickinson - MGCT2

GOODS: Great Observatories Origins Deep Survey 3 November 2006Mark Dickinson - MGCT2

GOODS: Great Observatories Origins Deep Survey 3 November 2006Mark Dickinson - MGCT2

GOODS: Great Observatories Origins Deep Survey 3 November 2006Mark Dickinson - MGCT2

GOODS: Great Observatories Origins Deep Survey 3 November 2006Mark Dickinson - MGCT2 IRAC observations of galaxies at z ~ 4-5 z~4 B-dropoutsz~5 V-dropouts

GOODS: Great Observatories Origins Deep Survey 3 November 2006Mark Dickinson - MGCT2 Stellar population issues (3) The models: No definite convergence on stellar population synthesis models yet. In particular, Maraston 2006 models: –Larger red light contribution from TP-AGB stars at Gyr –Different evolutionary tracks –Warmer RGB temperatures Redder colors and lower red/near-IR M/L at t < 2 Gyr Bluer colors at later times This reduces derived stellar pop. masses and ages at high redshift

GOODS: Great Observatories Origins Deep Survey 3 November 2006Mark Dickinson - MGCT2 Stellar population models Stellar mass may also be reduced by changing stellar population models: Maraston 2005 models with substantial TP-AGB contribution to red/near-IR light at ages of Gyr can reduce M/L significantly

GOODS: Great Observatories Origins Deep Survey 3 November 2006Mark Dickinson - MGCT2 Testing stellar M/L at high z Almost only SED modeling: at high redshift, almost no direct tests of stellar masses so far! –Galaxy kinematics to constrain M/L (mostly FP for early-type galaxies; see also RvdM talk) –Issues of dark matter effects in observed large-scale internal kinematics AO-fed integral field spectroscopy may be the best way forward.

GOODS: Great Observatories Origins Deep Survey 3 November 2006Mark Dickinson - MGCT2 Galaxy merging Galaxies grow their mass both by star formation and merging. A full understanding of galaxy growth requires understanding both. Stellar mass (M*) + star formation (dM*/dt) SF distribution functions versus time (t, z) are in principle sufficient … … but in practice real measurements of merger rates (ideally versus other galaxy properties (M*, SFR) would help a lot!! Observationally, still a highly debated topic, even at z < 1 In lieu of definitive data, models must guide us here.

GOODS: Great Observatories Origins Deep Survey 3 November 2006Mark Dickinson - MGCT2 The near-infrared data gap Near-IR data remain a huge bottleneck: –Much shallower than current deep optical or Spitzer/IRAC imaging. –Photo-z’s remain mandatory (unfortunately) and near-IR is the weakest link. Wide-field IR ground-based imagers: –WFCAM, WIRCAM, NEWFIRM, VISTA, HAWK-I, MOIRCS, FLAMINGOS-2, etc. HST/WFC3: –Detect fading red remnants of higher-z star formation –Differentiating stellar population components within galaxies –Measure UV spectral slopes (dust reddening) at z > 5 –Photometry/SEDs/photo-z’s for UV-faint galaxies at z > 5 –Reliable 2-color LBG selection at 6 < z < 10+

GOODS: Great Observatories Origins Deep Survey 3 November 2006Mark Dickinson - MGCT2

GOODS: Great Observatories Origins Deep Survey 3 November 2006Mark Dickinson - MGCT2 Stellar mass density, z~5 to 6 Stark et al. Eyles et al. Wiklind et al.  * (reion.), 6 < z < 10, C=30, f esc =1 Stars whose formation produces sufficient reionizing photons at 6<z<10 for 100% Lyman contin. escape fraction (Madau, Haardt & Rees 1999) Estimates for  * at z=5-6 are 5-50x smaller than at z~2-3 Yan et al. 2006

GOODS: Great Observatories Origins Deep Survey 3 November 2006Mark Dickinson - MGCT2 Ways Forward: a summary Fully exploit existing surveys: the era of “precision  L (z)” More redshifts! (and more reliable redshifts!) Extend multi- correlation studies at all redshifts –MIR, FIR, radio, UV, X-ray, H , etc. –Deeper radio and FIR vital: SCUBA-2, Herschel, ALMA… Mid-IR improvements: –Better mid-IR spectral templates –IRS spectral diagnostics for large high-z samples –Figure out the physics!!! (esp. MIR, PAHs, etc.) Measure dust temperatures at high z Get stellar evolution straight (stellar pop. models) It’s the IMF, dummy (esp. at intermediate & high masses) Better measurements of merger rates (vs. z & other properties) Insanely deep surveys at z~5-6 and beyond (WFC3; JWST; ALMA; TMT)

GOODS: Great Observatories Origins Deep Survey 3 November 2006Mark Dickinson - MGCT2

GOODS: Great Observatories Origins Deep Survey 3 November 2006Mark Dickinson - MGCT2 HDF-N: Negative serendipity Kajisawa et al. 2006: Subaru/MOIRCS distant red galaxies in GOODS-N

GOODS: Great Observatories Origins Deep Survey 3 November 2006Mark Dickinson - MGCT2 HDFN-JD1

GOODS: Great Observatories Origins Deep Survey 3 November 2006Mark Dickinson - MGCT2 HDFN-JD1 from Spitzer  m SED favors old, z~3 stellar population. No MIPS 24  m detection: probably not a dusty starburst/ERO.

GOODS: Great Observatories Origins Deep Survey 3 November 2006Mark Dickinson - MGCT2 Similar to AGN Evolution High luminosity AGN peak at z~2 Less luminous AGN / Seyferts peak at z~1 Ueda et al. 2003