CBM at FAIR Outline:  CBM Physics  Feasibility studies  Detector R&D  Planning, costs, manpower,...

Slides:



Advertisements
Similar presentations
The CBM experiment - exploring the QCD phase diagram at high net baryon densities - Claudia Höhne, GSI Darmstadt CBM collaboration The CBM experiment physics.
Advertisements

The Compressed Baryonic Matter (CBM) experiment at FAIR
The Compressed Baryonic Matter Experiment at FAIR Outline:  Physics case  Detector requirements  Feasibility studies  Detector R&D  Outlook Peter.
Silicon Tracker for CBM Walter F.J. Müller, GSI, Darmstadt for the CBM Collaboration Topical Workshop: Advanced Instrumentation for Future Accelerator.
Hadron Physics (I3HP) activities Hadron Physics (I3HP) is part of Integrated Activity of 6’th European Framework. Contract has a form of consortium of.
Experiment CBM – research program Paweł Staszel Jagiellonian University  Physics motivation  Detector concept  Feasibility study  Status.
Feasibility Studies of Low-mass Mesons Identification for the CBM Project Radosław Karabowicz Hot Matter Physics Department, Institute of Physics, Jagiellonian.
Open Charm Everard CORDIER (Heidelberg) Grako meeting HD, April 28, 2006Everard Cordier.
October-November 2003China - ALICE meeting1 PHOS in ALICE A PHOton Spectrometer with unique capabilities for the detection/identification of photons and.
Johann M. Heuser, GSI Darmstadt, Germany for the CBM Collaboration
Vector meson study for the CBM experiment at FAIR/GSI Anna Kiseleva GSI Germany, PNPI Russia   Motivation   The muon detection system of CBM   Vector.
INTRODUCTION One of the major experimental challenges of the Compressed Baryonic Matter (CBM) experiment is the measurement of the D-meson hadronic decay.
1 J.M. Heuser et al. CBM Silicon Tracker Requirements for the Silicon Tracking System of CBM Johann M. Heuser, M. Deveaux (GSI) C. Müntz, J. Stroth (University.
Development of a RICH detector for electron identification in CBM Claudia Höhne, GSI Darmstadt CBM collaboration Sixth Workshop on Ring Imaging Cherenkov.
Strange particles and neutron stars - experiments at GSI Outline: Probing dense baryonic matter (1-3 ρ 0 )  The nuclear equation-of-state  In medium.
Nucleus-nucleus collisions at the future facility in Darmstadt - Compressed Baryonic Matter at GSI Outline:  A future accelerator for intense beams of.
CBM at FAIR Walter F.J. Müller, GSI 5 th BMBF-JINR Workshop, January 2005.
Dec Heavy-ion Meeting ( 홍병식 ) 1 Introduction to CBM Contents - FAIR Project at GSI - CBM at FAIR - Discussion.
The CBM FAIR Volker Friese Gesellschaft für Schwerionenforschung Darmstadt  HI physics at intermediate beam energies  CBM detector concept.
Peter Senger Kolkata Feb. 05 Outline:  Facility of Antiproton and Ion Research  Physics motivation for CBM  Feasibility studies  Experiment layout.
1 Compressed Baryonic Matter at FAIR:JINR participation Hadron Structure 15, 29 th June- 3 th July, 2015 P. Kurilkin on behalf of CBM JINR group VBLHEP,
The Physics of CBM Volker Friese GSI Darmstadt CBM-China Workshop, Beijing, 2 November 2009.
15 th CBM collaboration meeting, GSI, Darmstadt, Germany, April 12-16, 2010Wang Yi, Tsinghua University R&D status of low resistive glass and high rate.
Status of the CBM experiment V. Friese Gesellschaft für Schwerionenforschung Darmstadt, Germany for the CBM Collaboration.
Peter Senger The Compressed Baryonic Matter Experiment at FAIR Critical Point and the Onset of Deconfinement, Florence, July Outline:  The Facility.
The CBM experiment at FAIR Claudia Höhne, GSI Darmstadt CBM collaboration Outline motivation, physics case observables experiment feasibility studies dileptons:
CBM at FAIR Walter F.J. Müller, GSI, Darmstadt for the CBM collaboration 5 th International Conference on Physics and Astrophysics of Quark Gluon Plasma,
Charmonium feasibility study F. Guber, E. Karpechev, A.Kurepin, A. Maevskaia Institute for Nuclear Research RAS, Moscow CBM collaboration meeting 11 February.
The Compressed Baryonic Matter Experiment at FAIR Outline:  Physics case  Feasibility studies and Detector R&D  Outlook Peter Senger Seoul, April 21,
Measurements of dileptons with the CBM-Experiment at FAIR Claudia Höhne, University Giessen CBM collaboration.
Di-lepton spectroscopy in CBM Claudia Höhne, GSI Darmstadt CBM collaboration.
ICPAGQP 2005, Kolkata Probing dense baryonic matter with time-like photons Dilepton spectroscopy from 1 to 40 AGeV at GSI and FAIR Joachim Stroth Univ.
The Compressed Baryonic Matter experiment at FAIR Claudia Höhne, GSI Darmstadt CBM collaboration Outline motivation, physics case observables experiment.
G. Musulmanbekov, K. Gudima, D.Dryablov, V.Geger, E.Litvinenko, V.Voronyuk, M.Kapishin, A.Zinchenko, V.Vasendina Physics Priorities at NICA/MPD.
1 J.M. Heuser − CBM Silicon Tracking System Development of a Silicon Tracking System for the CBM Experiment at FAIR Johann M. Heuser, GSI Darmstadt for.
Ingo DeppnerDPG-Frühjahrstagung, Mainz, A Multistrip-MRPC Prototype for the CBM Time-of-Flight Wall Outline: CBM-ToF requirements Conceptional.
1 THE MUON DETECTION SYSTEM FOR THE CBM EXPERIMENT AT FAIR/GSI A. Kiseleva Helmholtz International Summer School Dense Matter In Heavy Ion Collisions and.
1 JINR Contribution to the CBM experiment Report at the 5 th Workshop on the Scientific Cooperation Between German Research Centers and JINR, Dubna, January.
Di-muon measurements in CBM experiment at FAIR Arun Prakash 1 Partha Pratim Bhadhuri 2 Subhasis Chattopadhyay 2 Bhartendu Kumar Singh 1 (On behalf of CBM.
The Compressed Baryonic Matter Experiment at the Future Facility for Antiproton and Ion Research (FAIR) Outline:  FAIR: future center for nuclear and.
Mariana Petris, NIPNE Bucharest CBM Meeting, March 9 -12, 2005 HIGH COUNTING RATE TRANSITION RADIATION DETECTOR Bucharest Prototype In Beam Tests.
RPC upgrade for the HADES Tracking: MDC e -,e + identification with RICH- TOF/PreShower  0.4 GeV/c TOF is not sufficient- Pre-Shower p,  identification.
Peter Senger (GSI) The Compressed Baryonic Matter (CBM) experiment at FAIR FAIR Meeting Kiev, March Outline:  Scientific mission  Experimental.
Results from first beam tests for the development of a RICH detector for CBM J. Eschke 1*, C. Höhne 1 for the CBM collaboration 1 GSI, Darmstadt, Germany.
CBM The future of relativistiv heavy-ion physics at GSI V. Friese Gesellschaft für Schwerionenforschung Darmstadt, Germany Tracing the.
CBM Relativistiv heavy-ion physics at FAIR V. Friese Gesellschaft für Schwerionenforschung Darmstadt, Germany The QCD phase diagram : From.
The Compressed Baryonic Matter experiment at the future accelerator facility in Darmstadt Claudia Höhne GSI Darmstadt, Germany.
Ring Recognition and Electron Identification in the RICH detector of the CBM Experiment at FAIR Semeon Lebedev GSI, Darmstadt, Germany and LIT JINR, Dubna,
Physics investigations with CBM – and the importance of tracking – Claudia Höhne, Universität Gießen.
Exploring the phase diagram of strongly interacting matter Exploring the QCD phase diagram at large μ B with heavy-ion collisions: Low-energy RHIC: search.
Physics with CBM Claudia Höhne, GSI Darmstadt CBM collaboration Outline motivation, physics case observables.
1 Physics of High Baryon Densities - The CBM experiment at FAIR Subhasis Chattopadhyay Variable Energy Cyclotron Centre, Kolkata for the CBM collaboration.
The Compressed Baryonic Matter Experiment at FAIR Outline:  The Facility for Antiproton and Ion Research (FAIR)  Compressed Baryonic Matter: the physics.
Muon detection in the CBM experiment at FAIR Andrey Lebedev 1,2 Claudia Höhne 1 Ivan Kisel 1 Anna Kiseleva 3 Gennady Ososkov 2 1 GSI Helmholtzzentrum für.
Possible structures of a neutron star Exploring dense nuclear matter The Compressed Baryonic Matter Experiment atom: m nucleus:
The Compressed Baryonic Matter Experiment at the Future Accelerator Facility in Darmstadt Outline:  Probing dense baryonic matter  Experimental observables.
20/12/2011Christina Anna Dritsa1 Design of the Micro Vertex Detector of the CBM experiment: Development of a detector response model and feasibility studies.
The Compressed Baryonic Matter Experiment at the Future Facility for Antiproton and Ion Research (FAIR) Outline:  Physics: Exploring the QCD phasediagram.
The Compressed Baryonic Matter experiment at FAIR Claudia Höhne, GSI Darmstadt CBM collaboration Outline motivation, physics case observables experiment.
Exploring QCD with Antiprotons PANDA at FAIR M. Hoek on behalf of the PANDA Collaboration IOP Nuclear and Particle Physics Divisional Conference 4-7 April.
CBM and FRRC Mikhail Ryzhinskiy, SPbSPU (on behalf of Russian CBM branch) 1 st FRRC International Seminar.
Physics analysis with KFParticle Iouri Vassiliev CBM Collaboration.
TOF ECAL TRD Iouri Vassiliev , I. Kisel and M. Zyzak
Multi-Strange Hyperons Triggering at SIS 100
The Status of the CBM Experiment
Strangeness Prospects with the CBM Experiment
CBM Relativistiv heavy-ion physics at FAIR
A heavy-ion experiment at the future facility at GSI
I. Vassiliev, V. Akishina, I.Kisel and
Perspectives on strangeness physics with the CBM experiment at FAIR
Presentation transcript:

CBM at FAIR Outline:  CBM Physics  Feasibility studies  Detector R&D  Planning, costs, manpower,...

The critical end point Ejiri et al. Fodor-Katz Cross over 1st order transition Mapping the QCD phase diagram with heavy-ion collisions CBM physics: exploring the high density region of the QCD phase diagram. Search for restoration of chiral symmetry partonic matter at large μ B critical endpoint Dense baryon- dominated matter Meson- dominated matter

“Trajectories” (3 fluid hydro) Hadron gas EOS Ivanov & Toneev Calculations reproduce freeze-out conditions 30 AGeV trajectory close to the critical endpoint

CBM physics topics and observables 1. In-medium modifications of hadrons  onset of chiral symmetry restoration at high  B measure: , ,   e + e - open charm (D mesons) 2. Strangeness in matter (strange matter?)  enhanced strangeness production ? measure: K, , , ,  3. Indications for deconfinement at high  B  anomalous charmonium suppression ? measure: J/ , D  softening of EOS measure flow excitation function 4. Critical point  event-by-event fluctuations 5. Color superconductivity  precursor effects ?

Experimental challenges  10 7 Au+Au reactions/sec (beam intensities up to 10 9 ions/sec, 1 % interaction target)  determination of (displaced) vertices with high resolution (  30  m)  identification of electrons and hadrons Central Au+Au collision at 25 AGeV: URQMD + GEANT4 160 p 400   + 44 K + 13 K -

The CBM Experiment  Radiation hard Silicon pixel/strip detectors in a magnetic dipole field  Electron detectors: RICH & TRD & ECAL: pion suppression up to 10 5  Hadron identification: RPC, RICH  Measurement of photons, π 0, η, and muons: electromagn. calorimeter (ECAL)  High speed data acquisition and trigger system

Feasibility studies Event generators: URQMD, PLUTO Transport: GEANT3,4 via VMC

Single electron spectra Feasibility studies: charmonium measurements Assumptions: ideal tracking ideal electron identification, Pion suppression 10 4 Background: URQMD Au+Au 25 AGeV + GEANT4 Electron-positron pair invariant mass Cuts: p t > 1 GeV/c θ > 10 o

Cuts: 1. single electron: - p t > 0.1 GeV/c - d < 50  m 2. electron pair: - v z < 0.1 cm - v t < 0.01 cm - D < 0.01 cm - Θ > 10° S/B = 0.3 (ρ+  ) S/B = 1.2 (  ) Low mass electron-positron pairs Assumptions: ideal tracking and electron identification Background: URQMD Au+Au 25 AGeV + GEANT4

Pion misidentification a)0%b)0.01% c)0.1%d)1%

Feasibility study : open charm Background suppression by cut on detached vertex :  1000 D 0  K -  + (central 25 AGeV) Assuming = : S/B  1 Crucial detector parameters: Material budget of first 2 Silicon stations Single hit resolution Similar studies under way for D +  K -  +  +, D *± → D 0  ±

Hadron identification σ TOF = 80 ps Bulk of kaons (protons) can well be identified with σ TOF = 80 – 100 ps

y p t [GeV/c]  Kp acceptances

y p t [GeV/c] D0D0 J/ψ acceptances

event-by event fluctuations: K/  ratio accepted “true” identified (60ps, 70% purity) 10k UrQMD events

Measurement of dynamical fluctuations purity,%  dyn, % 404.0± ± ± ± ± ± ± ±5.2 True value : 5 % 10 % Simulations in progress to improve statistics 10 % fluctuation

Tracking with Silicon Stations Au+Au 25 AGeV: Reconstructed tracks Reconstruction efficiency > 95 % Momentum resolution ≈ 0.6 %

LOI (Jan. 2004): URQMD (and PLUTO) and GEANT4 (no tracking, ideal particle identification, efficiencies 100%,...) CBM software week May 2004 (  50 participants): simulation and analysis framework using VMC (GEANT3/4) based on ROOT Meeting of tracking group in July/August 2004: implementation of tracking algorithms and simple detector reponses (digitizers) Collaboration Meeting Oct. 6-8, 2004: first results of simulations with tracking, particle ID and efficiencies Technical Report Jan. 2005: results of realistic simulations Roadmap for feasibility studies towards the Technical Report

MIMOSA IV IReS / LEPSI Strasbourg Design of a Silicon Pixel detector Design goals: low materal budget: d < 200 μm single hit resolution < 20 μm radiation hard (dose n eq/cm 2 ) fast read out (20 – 40 MHz) Silicon Tracking System: 7 planar layers of pixels/strips. Vertex tracking by two first pixel layers at 5 cm and 10 cm downstream target Roadmap: R&D on Monolithic Active Pixel Sensors (MAPS) pitch 20 μm thickness below 100 μm single hit resolution :  3 μm radiation hard up to n eq/cm 2 read out 0.2 MHz R&D on radiation hardness and read out speed Fallback solution: Hybrid detectors

Design of a fast RICH Design goals: electron ID for γ > 42 e/π discrimination > 100 hadron blind up to about 6 GeV/c low mass mirrors (Be-glass) fast UV detector URQMD + GEANT4: Au+Au 25 AGeV radiator (40% He + 60% CH 4 )  40 rings per event, photons per ring (incl. efficiencies)

pions from Au+Au 25 AGeV Cherenkov threshold electrons producing Cherenkov light Au+Au 25 AGeV 100 events URQMD+GEANT4 pion threshold 5.9 GeV/c 90% saturation angle at 13.5 GeV/c Pion suppression with RICH

Hit rates for 10 7 minimum bias Au+Au collisions at 25 AGeV: Experimental conditions Rates of > 10 kHz/cm 2 in large part of detectors !  main thrust of our detector design studies

Design of a fast TRD Design goals: e/π discrimination of > 100 (p > 1 GeV/c) High rate capability up to 150 kHz/cm 2 Position resolution of about 200 μm Large area (  500 m 2, 9 layers) Roadmap: Outer part: ALICE TRD Inner part: MWPC/GEM/micromegas Straw tube TRT (ATLAS) Fast read-out electronics Simulation of pion suppression: TRD with fast gaseous detector Tests of prototypes (MWPC, GEMs, micromegas): July 2004 at SIS

Design of a high rate RPC Design goals: Time resolution ≤ 80 ps High rate capability up to 25 kHz/cm 2 Efficiency > 95 % Large area  150 m 2 Long term stability Prototype test: detector with plastic electrodes (resistivity 10 9 Ohm cm.) P. Fonte, Coimbra Tests of prototypes with low resistivity glass electrodes: ITEP July 2004

Anode 3 mm pitch Capacitor Block FOPI-Segmented-Anode-RPCs

Granularity: inner region 2x2 cm 2 intermediate region 5x5 cm 2 outer region 10x10 cm 2 Lead-scintillator calorimeter: 0.5 – 1 mm thick tiles 25 X 0 total length PM read out Distance between electron and closest track in the innermost region Design of an electromagnetic calorimeter Tests of detector module prototype: July 2004 at CERN

Run time estimate J/ψ beam energy AGeV J/  mult. produced min. bias J/  yield detected per week runtime weeks 104· · · · · · · · · · · · BR = 6%, ε = 0.1 reaction rate 5 MHz, trigger reduction 10 5 (e - from γ-conversion with p T  1 GeV/c) Additional measurement of excitation functions for: A + A (A= 12, 100) up to 45 AGeV ( 1 year) p + A (A = 12, 100, 200) up to 90 GeV (1 year) p + p up to 90 GeV (6 month) Au + Au  1 year  3.5 years beam on target for J/ψ

Multiplicity: 2x10 -4 / minimum bias event Au+Au 25 AGeV BR = 4%, ε = 0.1, → 8x10 -7 / event Goal: trigger reduction 400 (displaced vertex) reaction rate 10 MHz, trigger rate 25 kHz Number of detected D 0 -Mesons: 8/s (7x10 5 /day) run parallel to charmonium Run time estimate D 0 -Mesons

Run time low-mass vector mesons 4 rho mesons / minimum bias event Au+Au 25 AGeV BR = 4.5x10 -5, ε = 0.1, → 1.8x10 -5 / event Reaction rate without trigger reduction 25 kHz Number of detected rho mesons: 4x10 4 /day Measurements of excitation functions (beam on target) A + A (A= 12, 100, 200) up to 45 AGeV ( 36 weeks) p + A (A = 12, 100, 200) up to 90 GeV (15 weeks) p + p up to 90 GeV (5 weeks)  1 year beam on target

ComponentMio. € TRD (full cost)12 Electromagnetic Calorimeter8 offline computing3 Sum23 CDR: DetectorMio. € Silicon pixel1 Silicon Strip7 RICH3 TRD3 RPC4 Trigger/DAQ3 Super-conducting dipole2 Infrastructure4 Sum27 Cost estimate LOI:

EU FP6 Hadron Physics (2004 – 2006) Joint Research Projects (approved): Fast gaseous detectors Advanced TOF Systems Future DAQ and trigger systems Network activities (approved): CBMnet CBM Participation in EU Programmes: INTAS-GSI ( ) approved projects: Transition Radiation Detectors JINR LHE Dubna, NC PHEP Minsk, INFN Frascati, GSI Darmstadt Straw tube tracker: JINR LPP Dubna, LPI Moscow, PNPI Gatchina, TU Warsaw, FZ Rossendorf, FZ Jülich Resistive Plate Chambers INR Troitzk, IHEP Protvino, ITEP Moscow, LIP Coimbra, Univ. Heidelberg Electromagnetic calorimeter ITEP Moscow, Polimersintez Wladimir, Univ. Krakow, GSI Darmstadt INTAS open call ( ) CBM Network

CBM R&D working packages Feasibility, Simulations D  Kπ(π) GSI Darmstadt, Czech Acad. Sci., Rez Techn. Univ. Prague ,ω,   e + e - Univ. Krakow JINR-LHE Dubna J/ψ  e + e - INR Moscow Hadron ID Heidelberg Univ, Warsaw Univ. Kiev Univ. NIPNE Bucharest INR Moscow Tools: GSI Tracking KIP Univ. Heidelberg Univ. Mannheim JINR-LHE Dubna Design & construction of detectors Silicon Pixel IReS Strasbourg Frankfurt Univ., GSI Darmstadt, RBI Zagreb, Univ. Krakow Silicon Strip SINP Moscow State U. CKBM St. Petersburg KRI St. Petersburg RPC-TOF LIP Coimbra, Univ. Santiago de Com., Univ. Heidelberg, GSI Darmstadt, Warsaw Univ. NIPNE Bucharest INR Moscow FZ Rossendorf IHEP Protvino ITEP Moscow Fast TRD JINR-LHE, Dubna GSI Darmstadt, Univ. Münster INFN Frascati Straw tubes JINR-LPP, Dubna FZ Rossendorf FZ Jülich Tech. Univ. Warsaw ECAL ITEP Moscow GSI Darmstadt Univ. Krakow RICH IHEP Protvino GSI Darmstadt Pusan Univ. Trigger, DAQ KIP Univ. Heidelberg Univ. Mannheim GSI Darmstadt JINR-LIT, Dubna Univ. Bergen KFKI Budapest Silesia Univ. Katowice Univ. Warsaw Magnet JINR-LHE, Dubna GSI Darmstadt Analysis GSI Darmstadt, Heidelberg Univ, Data Acquis., Analysis

TaskParticipating InstitutionsFTE D-MesonsGSI, CAS Rez, TU Prague1 low-mass vector mesonsU Krakow, JINR-LHE3 charmonium ID via e+e-INR Moscow1 charmonium ID via μ+μ-PNPI, GSI1 hadron ID via TOFHeidelberg, Kiev, NIPNE, INR, RBI3 Hyperon IDPNPI, TU St. Pb1 Sim. & analysis frameworkGSI Darmstadt2 TrackingKIP HD, U Mannheim, JINR-LHE, JINR-LIT5 R&D on Silicon Pixel DetectorIReS, U Frankfurt, GSI, RBI, U Krakow3 R&D on Silicon Strip DetectorMoscow SU, CKBM, KRI, Obninsk Univ2 R&D on RPC TOF detector system with read-out electronics LIP Coimbra, Univ. Santiago, U Heidelberg, GSI, NIPNE, INR, FZR, IHEP, ITEP, Korea Univ., RBI, U Krakow, U Marburg 8 R&D on TRDJINR-LHE, GSI, Univ. Münster, PNPI, NIPNE6 R&D on straw tube trackerJINR-LPP Dubna, FZR Rossendorf2 R&D on RICHIHEP, GSI, Pusan Univ., PNPI4 R&D on ECALITEP, Univ. Krakow,2 Trigger and Data AcquisitionKIP HD, U Mannheim, JINR LIT, GSI, U Bergen, KFKI Budapest, Silesia Univ., PNPI, U Warsaw 7 Superconducting dipole magnetJINR-LHE Dubna, GSI Darmstadt2 SUM53

CBM Collaboration : 39 institutions, 14 countries Croatia: RBI, Zagreb Cyprus: Nikosia Univ. Czech Republic: Czech Acad. Science, Rez Techn. Univ. Prague France: IReS Strasbourg Germany: Univ. Heidelberg, Phys. Inst. Univ. HD, Kirchhoff Inst. Univ. Frankfurt Univ. Mannheim Univ. Marburg Univ. Münster FZ Rossendorf GSI Darmstadt Russia: CKBM, St. Petersburg IHEP Protvino INR Troitzk ITEP Moscow KRI, St. Petersburg Kurchatov Inst., Moscow LHE, JINR Dubna LPP, JINR Dubna LIT, JINR Dubna Obninsk State Univ. PNPI Gatchina SINP, Moscow State Univ. St. Petersburg Polytec. U. Spain: Santiago de Compostela Univ. Ukraine: Shevshenko Univ., Kiev Univ. of Kharkov Hungaria: KFKI Budapest Eötvös Univ. Budapest Korea: Korea Univ. Seoul Pusan National Univ. Norway: Univ. Bergen Poland: Krakow Univ. Warsaw Univ. Silesia Univ. Katowice Portugal: LIP Coimbra Romania: NIPNE Bucharest

Time schedule Milestones: 1. Technical Proposal begin of Technical Design Report end of 2007 Subproject Si-Tracker RICH TRD TOF-RPC ECAL Trigger/DAQ Electronics Magnet Infrastructure simulations, R&D, designPrototypingConstructionInstallation, test