A Localized Method of Particular Solutions for Solving Near Singular Problems C.S. Chen, Guangming Yao, D.L. Young Department of Mathematics University of Southern Mississippi U.S.A.
2016/1/142 OutlineOutline Radial Basis Functions The global approaches of the method of particular solutions Numerical examples of global method Local approach of the method of particular solutions Numerical examples of local method Near Singular Problems
2016/1/143 Radial Basis Functions Linear: Cubic: Multiquadrics: Polyharmonic Spines: Gaussian:
2016/1/144 Assume that To approximate f bywe usually require fitting the given data set of pairwise distinct centres with the imposed conditions The linear system is well-posed if the interpolation matrix is non-singular Surface Reconstruction Scheme
2016/1/145 The Splitting Method Consider the following equation Whereis a bounded open nonempty domain with sufficiently regular boundary Letwheresatisfying but does not necessary satisfy the boundary condition in (11). (10) (11) v satisfies (12) (13) (14)
2016/1/146 Assume that and that we can obtain an analytical solutionto Then To approximate f bywe usually require fitting the given data set of pairwise distinct centres with the imposed conditions Particular Solutions
2016/1/147 The linear system is well-posed if the interpolation matrix is non-singular where and (*)
2016/1/148 For in 2D
2016/1/149
10
2016/1/1411 Where G(r) is the fundamental solution of L Boundary Method is required.
2016/1/1412 The Method of Particular Solutions (MPS) where
2016/1/1413 Impose boundary conditions
2016/1/1414
2016/1/1415
2016/1/1416 Numerical Results
2016/1/1417 Example I Analytical solution: Computational Domain:
2016/1/1418
2016/1/1419 c : shape parameter of MQ
2016/1/1420 Consider the Poisson’s equation Given a large data set where
2016/1/1421
2016/1/1422
2016/1/1423
2016/1/1424
2016/1/1425
2016/1/1426
2016/1/1428
2016/1/1429
2016/1/1430
2016/1/1431
2016/1/14 Non-Dirichlet boundary condition
2016/1/1433
2016/1/1434
2016/1/1435
2016/1/1436
2016/1/1437
2016/1/1438
2016/1/1439 The absolute errors of LMAPS with L=1, n=5, S n =100, c=8.9
2016/1/14 L=1, S n = 100, N=225.
2016/1/1441 Local MPS verse Global MPS
2016/1/1442 n: number of neighbor points
2016/1/1443
2016/1/1444
2016/1/1445 LMPS verse LMQ
2016/1/14 Near Singular Problem I C.S. Chen, G. Kuhn, J. Li, G. Mishuris, Radial basis functions for solving near singular Poisson’s problems, Communication in Numerical Methods in Engineering, 2003, 19,
2016/1/14
48 Profile of exact solution
2016/1/1449 CS-RBF 400 quasi-random points
2016/1/1450 Test 1Test 2
2016/1/1451 Normalized Shape parameter where
2016/1/1452
2016/1/1453 Sobel quasi-random nodes Von-Del Corput quasi-random nodes Random nodes
2016/1/1454 Speed up N=10,000 CPU = 0.5/3.42 s N=40,000 CPU = 3.31/14.06 s N=62,500 CPU = 7.01/25.28 s
2016/1/1455 RMSE error verse shape parameter for a=1.6 and various mesh sizes LMPS
2016/1/1456 RMSE error verse shape parameter for h=1/200, and various value of a.
2016/1/1457
2016/1/1458 Near Singular Problem II Exact solution
2016/1/14 Profile of f(x,y) f(1,1,) = -15,861, f(0,0)=237
2016/1/1460
2016/1/1461 Near Singular Problem III
2016/1/1462
2016/1/1463 Adaptive Method First step Second step
2016/1/ rd step 4 th step
2016/1/1465