+ - Energy (eV) ‏ Extinction (a.u.) ‏ D=130nm d 1 =200nm d 2 =150nm Subradianceenhance thesharpening ofthe linewidth! Max: 91 Max: 23Max: 112 Max:18Max:

Slides:



Advertisements
Similar presentations
Nanophotonics Class 2 Surface plasmon polaritons.
Advertisements

Strong coupling between Tamm Plasmon and QW exciton
Giant Rabi splitting in metal/semiconductor nanohybrids
Wavelength, Frequency, and Energy Practice Problems
1 Au-shell cavity mode - Mie calculations R core = 228 nm R total = 266 nm t Au = 38 nm medium = silica cavity mode 700 nm cavity mode 880 nm 880 nm =
Boris N. Chichkov Leibniz University Hannover
Surface plasmon resonance imaging detection of silver nanoparticle-tagged immunoglobulin by Sharmistha Paul, Deepen Paul, George R. Fern, and Asim K. Ray.
Interpretation of the Raman spectra of graphene and carbon nanotubes: the effects of Kohn anomalies and non-adiabatic effects S. Piscanec Cambridge University.
1 Localized surface plasmon resonance of optically coupled metal particles Takumi Sannomiya*, Christian Hafner**, Janos Vörös* * Laboratory of Biosensors.
Surface-Enhanced Raman Scattering (SERS)
Lecture 33 Review for Exam 4 Interference, Diffraction Reflection, Refraction.
Third harmonic imaging of plasmonic nanoantennas
From individual to coupled metallic nanocavities Adi Salomon, Yehiam Prior Weizmann Institute of Science Radoslaw Kolkowski, Marcin Zielenski, Joseph Zyss.
Coherent State Preparation of a Single Molecule
Magnificent Optical Properties of Noble Metal Spheres, Rods and Holes Peter Andersen and Kathy Rowlen Department of Chemistry and Biochemistry University.
Surface Plasmon Resonance General Introduction Steffen Jockusch 07/15/07 Plasmons: - collective oscillations of the “free electron gas” density, often.
Nanoscale Imaging of Buried Structures via Scanning Near-Field Ultrasound Holography G. S. Shekhawat and V. P. Dravid, Science, 310, 89(2005). Journal.
Observation of Negative Differential Resistance Jiasen Ma Supervisor: Philippe Guyot-Sionnest Due to resonant tunneling the transmission coefficient gets.
Thermal Radiation Which of the following is true of thermal (blackbody) radiation? A.Only very hot objects give off thermal radiation. B.All objects give.
1 Experiments on Superconducting Metamaterial-Induced Transparency Cihan Kurter, John Abrahams, Chris Bennett, Tian Lan, Steven M. Anlage, L. Zhang, T.
Plasmon Assisted Nanotrapping E. P. Furlani, A. Baev and P. N. Prasad The Institute for Lasers, Photonics and Biophotonics University at Buffalo, SUNY.
Rodolfo Jalabert CHARGE AND SPIN DIPOLE RESONANCES IN METALLIC NANOPARTICULES : collective versus single-particle excitations R. Molina (Madrid) G. Weick.
. Random Lasers Gregor Hackenbroich, Carlos Viviescas, F. H.
Intro to Harmonic Oscillator Ankit, Donghun and Masha 4/2/2014 Intended for an intro physics course for non-physics majors (premeds)
Surface Plasmons devices and leakage radiation microscopy
Optical Characterization of GaN-based Nanowires : From Nanometric Scale to Light Emitting Devices A-L. Bavencove*, E. Pougeoise, J. Garcia, P. Gilet, F.
Nanoplasmonics: Correlated LSPR and TEM Emilie Ringe, Yingmin Wang, R. Van Duyne & L. D. Marks Collaborators: Theory: G.C. Schatz Synthesis: J. Huang,
ULTRAVIOLET-VISIBLE SPECTROSCOPY (UV-VIS). UV-VIS Absorbance of energy in the UV-Vis region results in the movement of an electron from the ground state.
Photo-induced ferromagnetism in bulk-Cd 0.95 Mn 0.05 Te via exciton Y. Hashimoto, H. Mino, T. Yamamuro, D. Kanbara, A T. Matsusue, B S. Takeyama Graduate.
6. LOW-TEMPERATURE PROPERTIES OF NON-CRYSTALLINE SOLIDS T > 1 K: other low-frequency excitations, “soft modes”, and the Soft-Potential Model.
UNT Nanotech Ultrafast and Nanoscale Photonics Group Arup Neogi, Department of Physics Research Areas 1.Nanostructured Optoelectronic materials for efficient.
Nanometric optical tweezers based on nanostructured substrates Miyasaka Lab. Hiroaki YAMAUCHI A. N. Grigorenko, N. W. Roberts, M. R. Dickinson & Y. Zhang.
Enhancing the Macroscopic Yield of Narrow-Band High-Order Harmonic Generation by Fano Resonances Muhammed Sayrac Phys-689 Texas A&M University 4/30/2015.
Surface Plasmons.
The design of dielectric environment for ultra long lifetime of graphene plasmon Dr. Qing Dai 22/10/2015.
Quantum Noise of a Carbon Nanotube Quantum Dot in the Kondo Regime Exp : J. Basset, A.Yu. Kasumov, H. Bouchiat and R. Deblock Laboratoire de Physique des.
Computational Nanophotonics Stephen K. Gray Chemistry Division Argonne National Laboratory Argonne, IL Tel:
NIRT: Opto-Plasmonic Nanoscope NSF NIRT Grant ECS PIs: Y. Fainman, V. Lomakin, A. Groisman, and G. W. Schmid-Schoenbeim University of California,
분자동역학을 이용한 금속표면의 Kinetic Roughening 현상에 대한 재 증착 효과 연구 Sang-Pil Kim 1,2, Kwang-Ryeol Lee 1, Jae-Sung Kim 3 and Yong-Chae Chung 2 1.Computational Science.
Tunable band gaps of protein enclosed nanocrystals for high efficiency solar energy conversion Stephen Erickson Trevor Smith Dr. Richard Watt Dr. John.
Nanolithography Using Bow-tie Nanoantennas Rouin Farshchi EE235 4/18/07 Sundaramurthy et. al., Nano Letters, (2006)
Andrew van Bommel February 28th, 2006
What’s Next? Plasmonic Imaging: "A New Lens into the Nano-World”
A brief overview of Plasmonic Nanostructure Design for Efficient Light Coupling into Solar Cells V.E. Ferry, L.A. Sweatlock, D. Pacifici, and H.A. Atwater,
PL R S ℏω exc. EL Intensity (arb. units) Energy (eV) Figure S1 – Kroutvar et al  t=12µs (a) (b)   exc.   QD EFEF EFEF V read CB VB Write Readout tt.
High performance optical absorber based on a plasmonic metamaterial 岑剡.
Surfaceplasmons in solar power Enhancing Efficiency of Solar Cells and Solar Thermal Collectors with surface Plasmon Resonances in Metal Nanoparticles.
Surface-Enhanced Raman Scattering (SERS)
기계적 변형이 가능한 능동 플라즈모닉 기반 표면증강라만분광 기판 Optical Society of Korea Winter Annual Meting 강민희, 김재준, 오영재, 정기훈 바이오및뇌공학과, KAIST Stretchable Active-Plasmonic.
Introduction of Nanoplasmonics 2011 Spring Semester.
Date of download: 7/7/2016 Copyright © 2016 SPIE. All rights reserved. Reflectance of a Pd layer with a thickness of 12 nm onto glass substrate as a function.
PROMIS 2nd workshop “Modelling and design Photonics” Cadiz May 2016
Plasmonic waveguide filters with nanodisk resonators
Self-assembly of Peptide Nanotubes
Fig. 5: Energy diagram of the PBHM-plasmonic coupled system.
. - t !!l t. - 1f1f J - /\/\ - ' I __.
(A) Schematic description of working principle and detection scheme.
Understanding Large Enhancements in Surface-Enhanced Raman Scattering Using Lithographically Fabricated Gold Bowtie Nanoantennas W. E. Moerner, Department.
علم پلاسمونیک امیدرضا دانشمندی، فهیمه بهزادی.
Volume 8, Pages (October 2018)
.. '.. ' 'i.., \. J'.....,....., ,., ,,.. '"'". ' · · f.. -··-·· '.,.. \...,., '.··.. ! f.f.
2D Momentum Spectra of the ATI Electrons by 10 fs Laser Pulses
Chap 23 Optical properties of metals and inelastic scattering
Fig. 1. Working principle of the plasmon sensor chip (NPS) for tEVs.
The speed of light in air is essentially c. (c = 3.00x108 m/s).
256 nm light strikes a metal and the ejected electrons have a stopping potential of 1.15 V. What is the work function of the metal in eV? (2) E = hf =
DMR: 2018 University of Pennsylvania
Illustration of MIS-C and the characterization of the device structure
Xi Bin, Xu Hao, Xiao Shiyi, Hao Jiaming and Zhou Lei
Fig. 4 Active refractive index sensing using the SPP lasing mode and beaming of the lasing emission. Active refractive index sensing using the SPP lasing.
Presentation transcript:

+ - Energy (eV) ‏ Extinction (a.u.) ‏ D=130nm d 1 =200nm d 2 =150nm Subradianceenhance thesharpening ofthe linewidth! Max: 91 Max: 23Max: 112 Max:18Max: 120 J. Aizpurua et al PRL 90, (2003) Fabricated in IMEC F. Hao et al PRB 76, (2007)

Extinction (a.u.)‏ Plasmon Energy (eV)‏ d 1 =200nm d 2 =180nm H=50nm D=100nm D=130nm D=150nm D=160nm D=170nm

Wavelength (nm)‏ Extinction (a.u.)‏ d 1 =200nm d 2 =150nm D=90nm H=50nm d 1 =200nm d 2 =150nm D=120nm H=50nm d 1 =200nm d 2 =180nm D=150nm H=50nm d 1 =200nm d 2 =180nm D=150nm H=25nm d 1 =600nm d 2 =540nm D=450nm H=75nm

Max: 110 Max: 11 k E θ Max: 102 Max: 41 Max: 36 θ =90° Max: 119 Max: 38 Max: 24 Max: 21 θ=45° Wavelength (nm)‏ Extinction (a.u.)‏ θ=0° Wavelength (nm)‏ A common substrate for both SERS and SEIRA !

Wavelength (nm)‏ Extinction (a.u.)‏ λ=1398 nm λ=2666 nm λ=1398 nm λ=2726 nm λ=2801 nm λ=1469 nm Wavelength (nm)‏ k E

+ - Plasmon Energy (eV)‏ Extinction (a.u.)‏ k E k E

+ - Wavelength (nm)‏ |α| (a.u.)‏ λ=1398nmλ=1583nm λ=2726nm |α| from FDTD |α| fitted by Fano model Individual resonances in Fano model Fano model:

k 1, γ 1 k 2, γ 2 Γ F1F1 F2F2 C.L. Garrido Alzar et al Am. J. Phys. 70 (1), (2002) Bright mode Dark mode

λ=2726nm λ=768nm λ=1417nm λ=937nm + - θ=90° θ=45° θ=0° Wavelength (nm)‏ Extinction (a.u.)‏ k E θ θ=15° θ=30° θ=60°

+ - θ=90° θ=45° θ=0° k E θ ` θ=15° θ=30° θ=60°