1 Synthesis and Characterization of N-Heterocyclic Carbene Palladium(II) Complexes. The Catalytic Application on Strecker Synthesis of α- Aminonitriles.

Slides:



Advertisements
Similar presentations
Asymmetric ketone and imine reductions using ruthenium catalysts Jonathan Hopewell, José E. D. Martins and Martin Wills* 1) M. Wills, D. S. Matharu and.
Advertisements

162 Chapter 19: Carboxylic Acid Derivatives: Nucleophilic Acyl Substitution 19.1: Nomenclature of Carboxylic Acid Derivatives (please read)
Development of Palladium-Catalyzed C-N Bond Formation Reaction Wu Hua
Iron-catalyzed Cross Coupling reactions: From Rust to a Rising Star
Alcohols: Structure & Synthesis
Three-component coupling reactions in ionic liquids: a facile synthesis of a-aminonitriles New J. Chem., 2003, 27, 462–465.
Created by Athena Anderson, Brette Chapin, Michelle Hansen and Kanny Wan and posted on VIPEr June Copyright Brette Chapin This work is licensed.
Asymmetric Suzuki–Miyaura Coupling in Water with a Chiral Palladium Catalyst Supported on an Amphiphilic Resin Yasuhiro Uozumi Angew. Chem. Int. Ed. 2009,
Oxidative Addition and Reductive Elimination Peter H.M. Budzelaar.
Low valent of Vanadium catalyst in organic synthesis.
1 Synthesis and Structural Characterization, of Nickel(II) Complexs Supported by Aminodipyridylphosphine Oxide Ligand. The Catalytic Application to Thioacetalization.
Department of Chemistry & Biochemistry Chung Cheng University
Synthesis, Characterization and Catalytic Application of Gold Nanoparticles-Supported Ni(II) Complex Catalyst Synthesis, Characterization and Catalytic.
I. Metal Based Reagents. II Non-Metal Based Reagents III. Epoxidations Oxidations.
Year 3 CH3E4 notes: Asymmetric Catalysis, Prof Martin Wills
The application of alkaline metal(Ca, Sr, Ba) complex as catalyst in organic chemistry 张文全 1.
Palladium Catalyzed C-N Bond Formation Jenny McCahill
Synthesis and Characterization of N- Heterocyclic Carbene Copper(I) Complexes. The Catalytic Application on Huisgen Cycloaddition and Acetylation Reactions.
Complex N-Heterocycle Synthesis via Iron-Catalyzed, Direct C-H Bond Amination Elisabeth T. Hennessy & Theodore A. Betley* Science 2013, 340, 591 Also featured.
1 Syntheses, Structural Characterization and Catalytic Applications of N-Heterocyclic Carbene Copper(I) Complexes 學 生 : 楊 霖 指導老師 : 于淑君 博士 2009 / 06 / 04.
Transition-Metal-Catalyzed Enantioselective Insertion of carbenes or carbenoids into the Heteroatom-Hydrogen Bond Reactions Xiaolei Lian
1 Single electron transfer reaction involving 1,3-dicarbonyl compounds and its synthetic applications Reporter: Jie Yu Oct. 31, 2009.
An Unsaturated Nickel(0) NHC Catalyst: Facile Preparation and
Pd-Catalyzed C-C Coupling Rxns Stille coupling: Negishi coupling: Suzuki coupling: Heck reaction: Sonogashira coupling:
化 学 系 Department of Chemistry Catellani Reaction
何玉萍 Palladium(II)-Catalyzed Alkene Functionalization.
Alexander Stadler and C. Oliver Kappe* 7 th Annual High-Throughput Organic Synthesis Meeting, February 13-15, 2002, San Diego, California Institute of.
Hydrogenation Textbook H: Chapter 15.1 – 15.6 Textbook A: Chapter 14.1 – 14.2.
Chiral Concave N-Heterocyclic Carbenes 3 rd International Summer School “Supramolecular Systems in Chemistry and Biology“ Tim Reimers Kiel, GER.
Microwave- Assisted Synthesis of 1,3- Dimesitylimidazolinium Chloride Brittney Hutchinson Department of Chemistry, University of New Hampshire, Durham,
John E. McMurry Paul D. Adams University of Arkansas Lecture 11 (Chapter 9) Alkyne Reactions.
Buchwald-Hartwig Cross Coupling Reaction Reporter: Ying-Chieh CHAO Lecturer: Professor Guey-Sheng Liou Advisor: Professor Ru-Jong Jeng Data:2013/12/27.
1 Literature Screening JACS Synthesis February 2 nd 2009 Thibaud Gerfaud.
1 CATALYTIC ASYMMETRIC NOZAKI- HIYAMA-KISHI REACTION: ROLE OF ORGANOCHROMIUM COMPOUNDS AND NOVEL SALEN LIGANDS A RKAJYOTI C HAKRABARTY Prof. Uday Maitra’s.
1 何 龙 西华师范大学化学化工学院 Brønsted Acid-Catalyzed Asymmetric Three- Component 1,3-Dipolar Cycloaddition Reaction 化学应用与污染控制技术重点实验室年会, 2010 , 12 , 12.
1 Synthesis and Characterization of N-Heterocyclic Carbene Palladium(II) Complexes. The Catalytic Application on Strecker Synthesis of α- aminonitriles.
Molecular and Gold Nanoparticles Supported N-Heterocyclic Carbene Silver(I) Complexes – Synthesis, Characterization and Catalytic Applications 學 生 :王趙增.
1 Molecular and Gold Nanoparticles Supported N-Heterocyclic Carbene Silver(I) Complexes – Synthesis, Characterization and Catalytic Applications 學生 : 王趙增.
High-Oxidation-State Palladium Catalysis 报告人:刘槟 2010 年 10 月 23 日.
Total Synthesis of Communesins Jian-Zhou Huang
Chem 1140; Ring-Closing Metathesis (RCM) and Ring-Opening Metathesis (ROMP) Introduction RCM Cross-Metathesis ROMP.
Manfred Scheer Coordination Chemistry of Phosphorous Containing Compounds Angela Dann May 8, 2006.
Supervisor: Yong Huang Reporter: Qian Wang Date: Magical Chiral Spirobiindane Skeletons.
Atom-Economical and Sustainable C-N Bond Formation Reactions from Alcohols and N-Sources via Catalytic Hydrogen Transfer Reactions September 15th, 2015.
Asymmetric BINOL-Phosphate Derived Brønsted Acids: Development and Catalytic Mechanism Reporter: Song Feifei Supervisor: Prof. Yong Huang
Department of Chemistry & Biochemistry Chung Cheng University
The Work Of Pr Karl A. Scheidt Group Department of Chemistry, Northwestern UniVersity, Evanston.
Redox Neutral Reactions Wang Chao Redox Economy and Redox Neutral Reactions: Angew. Chem. Int. Ed. 2009, 48, 2854 – 2867.
金属催化的氧化反应 CYP 450TauD Acc. Chem. Res. 2007, 40, 522–531.
Light and Palladium Induced Carbonylation Reactions of Alkyl Iodides Mechanism and Development Pusheng Wang Gong Group Meeting April 12 th 2014.
Synthesis, Characterization and Catalytic Application of N-Heterocyclic Carbene Copper(I) Complexes 學生:潘慶豪 指導教授:于淑君 博士 2005 / 07 / 21 國立中正大學 化學暨生物化學系 1.
Catalytic Synthesis of α,β- Unsaturated Carbonyl Derivatives 陈殿峰
Amines Physical Properties of Amines - Amines are moderately polar. For this reason the low formula weight amines.
PINCER COMPLEXES A SPECIAL TOPIC. Pincer Complexes Complexes of mixed donor polydentate ligands pioneered by Shaw in mid-70s.
Carmen Nájera Department of Organic Chemistry University of Alicante Alicante (Spain) Cross-Coupling Reactions in Aqueous Media 1 2 nd International Conference.
Enantioselective Reactions Catalyzed by Iron Complexes Pablo Pérez.
Palladium-catalysed reactions involving isocyanides Reporter: Xinzheng Chen Supervisor: Prof. David Zhigang Wang
Bijay Bhattarai Faculty Advisor Debra D. Dolliver Kevin Shaughnessy University of Louisiana System Academic Summit /13/2013 SUZUKI COUPLING OF N-ALKOXYIMIDOYL.
1 Synthesis of Organometallic Compounds Advanced Inorganic Chemistry 92/2.
Rhodium-catalyzed hydroamination of olefin Baihua YE 06/06/2011.
(1 mmol), aniline (1 mmol) or indole (1 mmol) and kojic acid (1 mmol)
Recent Development in Isocyanide-Based
Transition Metal Catalyzed Amide Bond Formation
Superbisor: Yong Huang
Novel Water-Soluble N-Heterocyclic Carbene
Development of Catalytic Reactions using Well-Defined Monomeric Cu(I)
Stability and Reactions of N-heterocyclic Carbenes
OF AROMATIC HYDROCARBONS
1. Palladium Catalyzed Organic Transformations
Ibrahim Sultan Mashima Laboratory Osaka University 2019/07/24
Presentation transcript:

1 Synthesis and Characterization of N-Heterocyclic Carbene Palladium(II) Complexes. The Catalytic Application on Strecker Synthesis of α- Aminonitriles 學生:洪柏楷 指導教授:于淑君 博士 2010 / 07 / 29 Department of Chemistry & Biochemistry Chung Cheng University

2 Phosphine Ligand Phosphines are electronically and sterically tunable. Expensive. Air/water sensitive and thermally unstable. Metal leaching. Chemical waste - water bloom. 25 mL USD 25 G 396 USD 100 mL 31.9 USD 10G 135.5USD

3 N-Heterocyclic Carbenes NHCs are stronger σ-donor and weaker π-acceptor than the most electron rich phosphines. NHCs can be useful spectator ligands, because they are sterically and electronically tunable. NHCs can promote a wide series of catalytic reactions like phosphine. NHCs have advantages over phosphines and offer catalysts with better air- and thermal stability. [M]

4 N-Heterocyclic Carbenes as Ligands - In the early 90's NHC were found to have bonding properties similar to trialklyphosphanes and alkylphosphinates. - compatible with both high and low oxidation state metals -examples: -reaction employing NHC's as ligands: Herrmann, W. Angew. Chem. Int. Ed. 2002, 41, Herrmann, W. A.; Öfele, K; Elison, M.; Kühn, F. E.; Roesky, P. W. J. Organomet. Chem. 1994, 480, C7-C9.

C-H Activation of Methane Oxidation of Alcohols Reductive Aldol Reaction Allylation of Aldehydes Strecker Reaction 5 The Catalytic Applications of Pd(II) Heck reaction Suzuki–Miyaura Reaction Carbon-Surfur Coupling Reactions Buchwald-Hartwig Reactions Etherification Reaction Ethylene-CO copolymerization Reaction

How does the life start on earth 6 Miller experiment – Water, methane, ammonia and hydrogen. Stanley L. Miller. Science 1953, 117,

7 Strecker Amino Acid Synthesis The Strecker amino acid synthesis is a series of chemical reactions that synthesize an amino acid from an aldehyde (or ketone). Adolph Strecker was the first to understand this organic reaction at Two novel organogallium(III) complexes were tested in vitro against human tumour. Santiago Gomez-Ruiz, Milena R. Journal of Organometallic Chemistry 2009, 694, 2191–2197. Strecker, D. Ann.Chem. Pharm. 1850, 75,

8 Lewis Acid-Catalyzed Strecker Reactions Lewis acid catalysts Et 3 N 、 InCl 3 、 Ga(OTf) 3 、 BiCl 3 Paraskar, A. S.; Sudalai, A. Tetrahedron Lett. 2006, 47, Ranu, B. C.; Dey, S. S.; Hajra, A. Tetrahedron 2002, 58, Surya Prakash, G. K.; Mathew, T. ; Panja, C.; Alconcel, S.; Vaghoo, H.; Do, C.; Olah, G. A. PNAS 2007, 104, De, S. K. ; Gibbs, R. A. Tetrahedron Lett. 2004, 45, Transition metal Lewis acid catalysts RuCl 3 、 NiCl 2 、 Sc(OTf) 3 、 Cu(OTf) 2 De, S. K. Synth. Commun. 2005, 35, De, S. K. J. Mol. Catal. A: Chem. 2005, 225, Lanthanide Lewis acid catalysts Pr(OTf) 3 、 La(O-i-Pr) 、 Yb(OTf) 3 De, S. K. Synth. Commun. 2005, 35, Others KSF 、 I 2 Yadav, J. S.; Subba Reddy, B. V.; Eeshwaraiah B.; Srinivas, M. Tetrahedron 2004, 60, Royer, L.; De, S. K.; Gibbs, R. A. Tetrahedron Lett. 2005, 46,

9 Motivation Using NHCs ligand to replace phosphine ligand in organomatallic catalysis. Synthesis of NHC-Pd(II) complexes with well-defined structures. Developing a practical and effective process for the Strecker Reactions. Greener catalysis –solventless and microwave conditions.

10 Toshikazu Hirao, Kenji Tsubata. Tetrahedron Letters 1978, 18, The First Palladium(II) Carbene Complexes

11 Lijin Xu, Weiping Chen Organometallics, 2000, 19, Examples of Pd(II)-Carbene Complexes Yuan Han, Han Vinh Huynh, Journal of Organometallic Chemistry, 2007, 692, 3606–3613.

12 Examples of Pd(II)-Carbene Complexes Yuan Han, Han Vinh Huynh, Journal of Organometallic Chemistry, 2007, 692, 3606–3613.

13 hmim = 1-hexyl-3-methylimidazolium Synthesis of Palladium(Il) Carbene Complexes (hmim)HI PdI 2 (hmim) 2

14 Synthesis of Pd(Il) Carbene Complex Catalyst Pd(hmim) 2 (OOCCF 3 ) 2

15 1 H NMR Spectra of (hmim)HI (2), PdI 2 (hmim) 2 (3), and Pd(hmim) 2 (OOCCF 3 ) 2 (4) *CDCl 3 2H H CH 3

16 13 C NMR Spectra of (hmim)HI (2), PdI 2 (hmim) 2 (3), and Pd(hmim) 2 (OOCCF 3 ) 2 (4) *CDCl 3 C C C q, 2 J(C,F) = 36.0 Hz q, 1 J(C,F) = Hz

19 F NMR of Pd(hmim) 2 (OOCCF 3 ) 2 (4) 17 F

18 IR Spectra of (hmim)HI (2), PdI 2 (hmim) 2 (3), and Pd(hmim) 2 (OOCCF 3 ) 2 (4) (hmim)HI (2) PdI 2 (hmim) 2 (3) Pd(hmim) 2 (OOCCF 3 ) 2 (4) 1868 (C=O) imidazole H–C–C & H–C–N bending 2953,2930, imidazole ring ν (C–H) aliphatic ν (C–H) imidazole ν (ring stretching) 3079, , 2928, , , 2933, ,

19 Single-Crystal Structure of PdI 2 (hmim) 2 (3) bond lengths [Å] bond angles [deg] Pd(1)-C(11) Pd(1)-I(1) 2.019(5) (5) N(4)-C(11)-N(3) C(11)-Pd(1)-C(1) I(2)-Pd(1)-I(1) C(11)-Pd(1)-I(2) C(1)-Pd(1)-I(1) 105.0(5) 179.8(2) (2) 89.62(15) 90.27(14) Pd(2)-C(21) Pd(2)-I(3)# (6) (6) N(5)-C(21)-N(6) C(21)-Pd(2)-C(21)#1 I(3)-Pd(2)-I(3)#1 C(21)-Pd(2)-I(3)#1 C(21)#1-Pd(2)-I(3) 105.4(5) 180.0(4) (2) 90.0(2) dihedral angle 8.20 ° Range of Pd(II)-C 1.97 ~ 2.30 Å

20 Lijin Xu, Weiping Chen Organometallics, 2000, 19, N-Heterocyclic Carbene Complexes of Palladium ---- cis / trans-Isomerization trans-anti : trans-syn = 1:1 d-CDCl 3 rt, 24 h d-CDCl 3 trans-anti : trans-syn = 5:1

PdI 2 (hmim) 2 (3) trans-syn and trans-anti Isomerization 21 rt, 12h PdI 2 (hmim) 2 (3) recrystalized from toluene + hexane (1:15) PdI 2 (hmim) 2 (3) d-CDCl NMR 50 °C, 12h trans-anti trans-syn : trans-anti = 1:

22 Strecker Reaction Jiacheng Wang, Yoichi Masui, Makoto Onaka Eur. J. Org. Chem. 2010, 1763–1771.

Noor-ul H. Khan, Santosh Agrawal. Tetrahedron Letters. 2008, 49, 640– Examples of Catalytic Strecker Reaction of Ketones Thomas Mathew, Chiradeep Panja, Steevens Alconcel. PNAS. 2007,104, 3703–3706. Jiacheng Wang, Yoichi Masui, Makoto Onaka Eur. J. Org. Chem. 2010, 1763–1771.

24 Jamie Jarusiewicz, Yvonne Choe. J. Org. Chem. 2009, 74, 2873–2876. Examples of Catalytic Strecker Reaction of Ketones Jing Nie, Teng Wanga, Jun An Ma Org. Biomol. Chem. 2010, 8, 1399–1405.

25 AldehydeKetoneAmine Pd(II)-Catalyzed Strecker Reactions

26 Pd(hmim) 2 (OOCCF 3 ) 2 (4) Catalyzed Strecker Reactions Solvent Time (min) Conv. (%) Time (min) Conv. (%) toluene CH 2 Cl THF actonitrile neat5>9925- Reaction Conditions : Catalyst Loading = 3 mol % ; Benzaldehyde = 0.2 mmol; Aniline = 0.2 mmol, TMSCN = 0.4 mmol ; Sodium Sulfate = 0.7 mmol. The conversion is determined by 1 H NMR.

27 Entry Aldehyde (R) Time (min) Conv. (%) Intermediate / Product / Side product 1Ph1>990/100/0 24-ClC 6 H 4 1>990/100/0 34-MeC 6 H 4 1>990/100/0 44-MeOC 6 H 4 1>990/100/0 52-furyl1>990/100/0 62-thienyl1>990/59/41 72-thienyl1>990/90/10 a 83-pyridyl3>990/100/0 9(E)-PhCH=CH1>990/100/0 10butyl1>990/100/0 11cyclohexyl1>990/100/0 12t-butyl1>990/100/0 Reaction Conditions : Aldehyde = 0.2 mmol; Benzylamine = 0.2 mmol, TMSCN = 0.4 mmol. The conversion is determined by 1 H NMR. a PdI 2 (hmim) 2 (3) as catalyst (3 mol%). Strecker Reaction Under Catalyst-Free Conditions

28 Entry Aldehyde (R) Time (min) Conv. (%) Int./ Product no cat. condition Conv. (%) Int./ Product 1Ph5>993/97>9969/31 2Ph5937/86 a >9969/31 34-ClC 6 H 4 10>9930/70>9982/18 44-MeC 6 H 4 2>990/ / MeOC 6 H 4 1>990/ /39 62-furyl2>990/ /75 72-thienyl109713/849377/16 83-pyridyl159717/809669/27 9(E)-PhCH=CH4>990/100>9952/48 10cyclohexyl1>990/100>990/100 Reaction Conditions : Catalyst Loading = 3 mol % ; Aldehyde = 0.2 mmol; Aniline = 0.2 mmol, TMSCN = 0.4 mmol. The conversion is determined by 1 H NMR. a Pd(hmim) 2 (OOCCF 3 ) 2 (4) as catalyst. PdI 2 (hmim) 2 (3)-Catalyzed Strecker Reactions

29 Reaction Conditions : Catalyst Loading = 3 mol % ; Benzaldehyde = 0.2 mmol; Amine = 0.2 mmol, TMSCN = 0.4 mmol. The conversion is determined by 1 H NMR. PdI 2 (hmim) 2 (3)-Catalyzed Strecker Reactions Entry Amine (R) Time (min) Conv. (%) Int./ Product/ Side product no cat. condition Conv. (%) Int./ Product/ Side product 1butyl1950/90/5>990/87/13 2cyclohexyl1>990/94/6>990/88/12 3Ph5>993/97/0>9969/31/0 44-ClC 6 H 4 5>990/100/0>9978/22/0 54-MeC 6 H 4 5>990/100/09863/35/0 6piperidine20920/77/15910/62/29 7pyrrolidine15970/89/8900/86/4 8morpholine20>990/92/8>990/82/18

30 Entry Aldehyde (R) Time (min) Yield (%) Reported Data Time (min) Yield (%) Reference 1Ph Masui Y, Chem.Eur. J., ClC 6 H Najera C., Synthesis, MeC 6 H Masui Y, Chem.Eur. J., MeOC 6 H Masui Y, Chem.Eur. J., furyl Masui Y, Chem.Eur. J., thienyl Abaee M. S., Tetrahedron Lett., pyridyl Panja C., Synlett., (E)-PhCH=CH Panja C., Synlett., cyclohexyl Acosta F. C., Commun., 2009 Reaction Conditions : Catalyst Loading = 3 mol % ; Aldehyde = 0.2 mmol; Aniline = 0.2 mmol, TMSCN = 0.4 mmol. The conversion is determined by 1 H NMR. Comparison of 3-Catalyzed Strecker Reactions with Reported Data

31 Entry Amine (R) Time (min) Yield (%) Reported Data Time (min) Yield (%) Reference 1butyl Masui Y, Chem.Eur. J., cyclohexyl Najera C., Synthesis, Ph Masui Y, Chem.Eur. J., ClC 6 H Masui Y, Chem.Eur. J., MeC 6 H Abaee M. S., Tetrahedron Letters, piperidine Azizi N., Synthetic Communications, pyrrolidine Azizi N., Synthetic Communications, morpholine Desai U. V., Monatshefte fur Chemie., 2007 Reaction Conditions : Catalyst Loading = 3 mol % ; Benzaldehyde = 0.2 mmol; Amine = 0.2 mmol, TMSCN = 0.4 mmol. The conversion is determined by 1 H NMR. Comparison of 3-Catalyzed Strecker Reactions with Reported Data

32 NeatNeat mg Na 2 SO 4 Time (h) Conv. (%) Time (h) Conv. (%) cat. 3cat. 4cat. 3cat <51244< ­ 18-- ­- 2454<52448<5 Reaction Conditions : Catalyst Loading = 3 mol % ; Acetophenone = 0.2 mmol; Aniline = 0.2 mmol, TMSCN = 0.4 mmol. The conversion is determined by 1 H NMR. PdI 2 (hmim) 2 (3) and Pd(hmim) 2 (OOCCF 3 ) 2 (4)-Catalyzed Strecker Reactions of Ketone

33 EntryMW cat. 3cat. 4 Time (s) Conv. (%) Time (s) Conv. (%) Microwave-Assisted PdI 2 (hmim) 2 (3) and Pd(hmim) 2 (OOCCF 3 ) 2 (4)-Catalyzed Strecker Reaction of Ketones Reaction Conditions : Catalyst Loading = 3 mol % ; Acetophenone = 0.2 mmol; Aniline = 0.2 mmol, TMSCN = 0.4 mmol. The conversion is determined by 1 H NMR.

34 Microwave-Assisted PdI 2 (hmim) 2 (3) and Pd(hmim) 2 (OOCCF 3 ) 2 (4)-Catalyzed Strecker Reactions EntryR1R1 R2R2 cat.3cat.4 Time (s) Conv. (%) Time (s) Conv. (%) 1Ph MeOC 6 H Ph4-MeOC 6 H MeC 6 H ClC 6 H MeOC 6 H 4 Ph BrC 6 H 4 Ph MeOC 6 H Ph naphthyl4-MeOC 6 H MeOC 6 H furylPh pyridyl Ph MeOC 6 H ′-methoxy propiophenone Ph Reaction Conditions : Catalyst Loading = 3 mol % ; Ketone = 0.2 mmol; Amine = 0.2 mmol, TMSCN = 0.4 mmol; (Bmim)PF 6 = 2 drops; Power = 150W. The conversion is determined by 1 H NMR.

35 PdI 2 (hmim) 2 (3)-Catalyzed Strecker Reactions Benzyl amine (pK b = 4.67) Aniline (pK b = 9.3) Kobayashi S.; Tsuchiya Y.; Mukaiyama T. Chemistry Letters, 1991,

36 EntryR1R1 R2R2 cat. 3 Reported Data Time (s) Conv. (%) Time (h) Conv. (%) 1Ph b 23-MeOC 6 H c 3Ph4-MeOC 6 H c 44-MeC 6 H a 54-ClC 6 H e 64-MeOC 6 H 4 Ph e 7 4-BrC 6 H 4 Ph a 84-MeOC 6 H c 9Ph b 102-naphthyl4-MeOC 6 H c 113-MeOC 6 H c 122-furylPh d 13 3-pyridyl Ph d 144-MeOC 6 H c 15 4′-methoxy propiophenone Ph e Reaction Conditions : Catalyst Loading = 3 mol % ; Ketone = 0.2 mmol; Amine = 0.2 mmol, TMSCN = 0.4 mmol; (Bmim)PF 6 = 2 drops; Power = 150W. The conversion is determined by 1 H NMR. a Ga(OTf) 3, b Fe(Cp) 2 PF 6, c BINOL-derived phosphoric acid, d Pd II -NHC, e Sn-Mont Comparison of 3-Catalyzed Strecker Reactions with Reported Data

37 EntryR1R1 R2R2 cat. 4Reported Data Time (s) Conv. (%) Time (h) Conv. (%) 1Ph b 23-MeOC 6 H c 3Ph4-MeOC 6 H c 44-MeC 6 H a 54-ClC 6 H e 64-MeOC 6 H 4 Ph e 7 4-BrC 6 H 4 Ph a 84-MeOC 6 H c 9Ph b 102-naphthyl4-MeOC 6 H c 113-MeOC 6 H c 122-furylPh d 13 3-pyridyl Ph d 144-MeOC 6 H c 15 4′-methoxy propiophenone Ph e Reaction Conditions : Catalyst Loading = 3 mol % ; Ketone = 0.2 mmol; Amine = 0.2 mmol, TMSCN = 0.4 mmol; (Bmim)PF 6 = 2 drops; Power = 150W. The conversion is determined by 1 H NMR. a Ga(OTf) 3, b Fe(Cp) 2 PF 6, c BINOL-derived phosphoric acid, d Pd II -NHC, e Sn-Mont Comparison of 4-Catalyzed Strecker Reactions with Reported Data

38 Proposed Mechanism for Strecker Reaction

39 Conclusions We have successfully synthesized NHC-carbene Pd(II) complexes (3) and (4), and characterized them by using 1 H-, 13 C, 19 F-NMR, IR spectrocopies, as well as X-ray crystallography. We have successfully demonstrated the highly effective activity of the Pd(II) NHC-carbene complex catalyst towards the Strecker reactions. Not many successful synthetic protocols for Strecker reactions of ketones has been reported. We have demonstrated in this study that our target Pd(II) NHC-carbene catalyst (3) and (4) is highly active for the Strecker reactions of ketones under microwave irradiation conditions.