Optimizing the green-field beta beam NuFact 08 Valencia, Spain June 30-July 5, 2008 Walter Winter Universität Würzburg.

Slides:



Advertisements
Similar presentations
Precision Neutrino Oscillation Measurements & the Neutrino Factory Scoping Study for a Future Accelerator Neutrino Complex – Discussion Meeting Steve Geer,
Advertisements

6/6/2003Jonathan Link, Columbia U. NuFact03 Future Measurement of sin 2 2  13 at Nuclear Reactors Jonathan Link Columbia University June 6, 2003 ′03.
Near detectors and systematics IDS-NF plenary meeting at TIFR, Mumbai October 13, 2009 Walter Winter Universität Würzburg TexPoint fonts used in EMF: AAAAA.
On storage ring and muon energy IDS-NF plenary meeting RAL, UK September 22-25, 2010 Walter Winter Universität Würzburg TexPoint fonts used in EMF: AAAAA.
Sinergia strategy meeting of Swiss neutrino groups Mark A. Rayner – Université de Genève 10 th July 2014, Bern Hyper-Kamiokande 1 – 2 km detector Hyper-Kamiokande.
CP violation searches with Neutrino Factories and Beta Beams Neutrinos in Particle, in Nuclear and in Astrophysics Trento, Italy November 20, 2008 Walter.
Reactor & Accelerator Thanks to Bob McKeown for many of the slides.
How Will We See Leptonic CP Violation? D. Casper University of California, Irvine.
Beyond T2K and NOvA (… and reactor experiments) NuFact 06 UC Irvine, USA August 24, 2006 Walter Winter Universität Würzburg, Germany.
CP violation and mass hierarchy searches Neutrinos in particle physics and astrophysics (lecture) June 2009 Walter Winter Universität Würzburg TexPoint.
Phenomenology of future LBL experiments … and the context with Euro WP6 IDS-NF + Euro plenary meeting at CERN March 25, 2009 Walter Winter Universität.
Neutrino oscillation physics with superbeams and neutrino factories Nu HoRIzons workshop HRI, India February 13-15, 2008 Walter Winter Universität Würzburg.
Summary of WG1 – Phenomenological issues Osamu Yasuda (TMU)
Caren Hagner CSTS Saclay Present And Near Future of θ 13 & CPV in Neutrino Experiments Caren Hagner Universität Hamburg Neutrino Mixing and.
Resolving neutrino parameter degeneracy 3rd International Workshop on a Far Detector in Korea for the J-PARC Neutrino Beam Sep. 30 and Oct , Univ.
The Earth Matter Effect in the T2KK Experiment Ken-ichi Senda Grad. Univ. for Adv. Studies.
Physics with a very long neutrino factory baseline IDS Meeting CERN March 30, 2007 Walter Winter Universität Würzburg.
New physics searches with near detectors at the Neutrino Factory MINSIS workshop UAM Madrid December 10-11, 2009 Walter Winter Universität Würzburg TexPoint.
ESS based neutrino Super Beam for CP Violation discovery Marcos DRACOS IPHC-IN2P3/CNRS Strasbourg 1 20 August 2013M. Dracos.
Sterile Neutrino Oscillations and CP-Violation Implications for MiniBooNE NuFact’07 Okayama, Japan Georgia Karagiorgi, Columbia University August 10, 2007.
Dec. 13, 2001Yoshihisa OBAYASHI, Neutrino and Anti-Neutrino Cross Sections and CP Phase Measurement Yoshihisa OBAYASHI (KEK-IPNS) NuInt01,
CP violation and mass hierarchy searches with Neutrino Factories and Beta Beams NuGoa – Aspects of Neutrinos Goa, India April 10, 2009 Walter Winter Universität.
Karsten M. Heeger US Reactor  13 Meeting, March 15, 2004 Comparison of Reactor Sites and  13 Experiments Karsten Heeger LBNL.
Physics at the VLENF (very low energy neutrino factory) IDS-NF plenary meeting October 19-21, 2011 Arlington, VA, USA Walter Winter Universität Würzburg.
Beta beam scenarios … for neutrino oscillation physics Beta beam meeting Aachen, Germany October 31-November 1, 2007 Walter Winter Universität Würzburg.
Geographical issues and physics applications of “very long” neutrino factory baselines NuFact 05 June 23, 2005 Walter Winter Institute for Advanced Study,
Neutrino Factory and Beta Beam Experiment NO-VE 2006 Venice, Italy February 8, 2006 Walter Winter Institute for Advanced Study, Princeton.
νeνe νeνe νeνe νeνe νeνe νeνe Distance (L/E) Probability ν e 1.0 ~1800 meters 3 MeV) Reactor Oscillation Experiment Basics Unoscillated flux observed.
Road Map of Future Neutrino Physics A personal view Ken Peach Round Table discussion at the 6 th NuFACT Workshop Osaka, Japan 26 th July – 1 st August.
Impact of large  13 on long- baseline measurements at PINGU PINGU Workshop Erlangen university May 5, 2012 Walter Winter Universität Würzburg TexPoint.
If  13 is large, then what ? Hisakazu Minakata Tokyo Metropolitan University.
Mass hierarchy using medium baseline detector Yoshitaro Takaesu KIAS/KNRC In collaboration with S.F. Ge, N. Okamura and K. Hagiwara arXiv:
Neutrino Factories Andrea Donini Instituto de Física Teórica/Instituto de Física Corpuscular CSIC European Strategy for Neutrino Oscillation Physics -
J. Bouchez CEA/DAPNIA CHIPP Neuchâtel June 21, 2004 A NEW UNDERGROUND LABORATORY AT FREJUS Motivations and prospects.
Degeneracy and strategies of LBL Osamu Yasuda Tokyo Metropolitan University NuFACT04 workshop July 28, 2004 at Osaka Univ.
Neutrino factory physics reach … and impact of detector performance 2 nd ISS Meeting KEK, Tsukuba, Japan January 24, 2006 Walter Winter Institute for Advanced.
Optimization of a neutrino factory oscillation experiment 3 rd ISS Meeting Rutherford Appleton Laboratory, UK April 25-27, 2006 Walter Winter Institute.
Physics and Performance Evaluation Group NuFact 07 Okayama University, Japan August 6, 2007 Walter Winter Universität Würzburg for the executive committee:
Contents of IDR: PPEG IDS-NF plenary meeting RAL, UK September 22-25, 2010 Walter Winter Universität Würzburg TexPoint fonts used in EMF: AAAAA A A A.
Long baseline neutrino oscillations: Theoretical aspects NOW 2008 Conca Specchiulla, Italy September 9, 2008 Walter Winter Universität Würzburg TexPoint.
ESS based neutrino Super Beam for CP Violation discovery Marcos DRACOS IPHC-IN2P3/CNRS Strasbourg 1 10 September 2013M. Dracos.
NSI versus NU at the Neutrino Factory Euronu meeting Strasbourg June 2-4, 2010 Walter Winter Universität Würzburg TexPoint fonts used in EMF: AAAAA A A.
Road Map of Neutrino Physics in Japan Largely my personal view Don’t take too seriously K. Nakamura KEK NuFact04 July 30, 2004.
Optimization of a neutrino factory for non-standard neutrino interactions IDS plenary meeting RAL, United Kingdom January 16-17, 2008 Walter Winter Universität.
The quest for  13 : Parameter space and performance indicators Proton Driver General Meeting At Fermilab April 27, 2005 Walter Winter Institute for Advanced.
Thoughts on the optimization of the VLENF VLENF meeting at Fermilab, USA September 1, 2011 Walter Winter Universität Würzburg TexPoint fonts used in EMF:
Measuring  13 with Reactors Stuart Freedman HEPAP July 24, 2003 Bethesda Reactor Detector 1Detector 2 d2d2 d1d1.
Near detectors for new physics searches IDS-NF plenary meeting at TIFR, Mumbai October 12, 2009 Walter Winter Universität Würzburg TexPoint fonts used.
PPEG plan for development of physics case for RDR IDS-NF plenary meeting October 19-21, 2011 Arlington, VA, USA Walter Winter Universität Würzburg TexPoint.
Optimization of a neutrino factory Discovery machine versus precision instrument NuFact 07 Okayama University, Japan August 6, 2007 Walter Winter Universität.
Sterile neutrinos at the Neutrino Factory IDS-NF plenary meeting October 19-21, 2011 Arlington, VA, USA Walter Winter Universität Würzburg TexPoint fonts.
Jose Bernabeu U. Valencia and IFIC XIII International Workshop on Neutrino Telescopes March 2009 CP Violation in Neutrino Oscillations without Antineutrinos:
Energy Dependence and Physics Reach in regard to Beta/EC Beams J. Bernabeu U. Valencia and IFIC B. Pontecorvo School September 2007.
A monochromatic neutrino beam for  13 and  J. Bernabeu U. de Valencia and IFIC NO-VE III International Workshop on: "NEUTRINO OSCILLATIONS IN VENICE"
Optimization of a neutrino factory for large  13 Golden 07 IFIC, Valencia June 28, 2007 Walter Winter Universität Würzburg.
Systematics at the Neutrino Factory … and the global context NuInt 2012 Rio de Janeiro, Brazil Oct , 2012 Walter Winter Universität Würzburg TexPoint.
Neutrino physics: The future Gabriela Barenboim TAU04.
T2K Experiment Results & Prospects Alfons Weber University of Oxford & STFC/RAL For the T2K Collaboration.
Epiphany06 Alain Blondel A revealing comparison: A detailed comparison of the capability of observing CP violation was performed by P. Huber (+M. Mezzetto.
Marcos DRACOS IPHC-IN2P3/CNRS Université de Strasbourg
IPHC-IN2P3/CNRS Strasbourg
NuGoa – Aspects of Neutrinos Goa, India April 10, Walter Winter
IDS-NF + Euron plenary meeting at CERN March 25, Walter Winter
Physics and Performance Evaluation Group: Status and plans
High g Li/B b-Beam Enrique Fernández-Martínez, MPI für Physik Munich
T2KK sensitivity as a function of L and Dm2
T2KK Sensitivity of Resolving q23 Octant Degeneracy
Using Single Photons for WIMP Searches at the ILC
Determination of Neutrino Mass Hierarchy at an Intermediate Baseline
Monoenergetic Neutrino Beam for Long Baseline Experiments
Presentation transcript:

Optimizing the green-field beta beam NuFact 08 Valencia, Spain June 30-July 5, 2008 Walter Winter Universität Würzburg

June 30, 2008NuFact 08 - Walter Winter2 Contents Introduction: Green-field scenario Introduction: Green-field scenario Beta beam for small  13 Beta beam for small  13 Beta beam for large  13 Beta beam for large  13 Summary Summary

June 30, 2008NuFact 08 - Walter Winter3 Green-field scenario No specific accelerator, L,  No specific accelerator, L,  Two possible isotope pairs Two possible isotope pairs Different luminosities: Typically Different luminosities: Typically – useful ion decays/year for neutrinos useful ion decays/year for antineutrinos –5 years nu + 5 years antinu running  Corresponds to Luminosity scaling factor (LSF) = 1 LSF scales useful ion decays (integrated over t) x detector mass x efficiency –Specific detector technology: WC, TASD, MID, etc. Detector mass will be given separately (fct. of technology)!  Optimize the parameters (isotope pair, LSF, detector technology, L,  ) for the best physics output ( )

June 30, 2008NuFact 08 - Walter Winter4 Isotopes compared: Spectrum Example: Unoscillated spectrum for CERN-INO Example: Unoscillated spectrum for CERN-INO Total flux ~ N   2 (forward boost!) (N  : useful ion decays) Total flux ~ N   2 (forward boost!) (N  : useful ion decays) (from Agarwalla, Choubey, Raychaudhuri, 2006)  Peak E ~  E 0 Max. E ~ 2  E 0 (E 0 >> m e assumed; E 0 : endpoint energy) (E 0 ~ 14 MeV)(E 0 ~ 4 MeV)

June 30, 2008NuFact 08 - Walter Winter5 Want same neutrino energies (=same X-sections, L, physics=MSW, …): Peak energy ~  E 0, flux ~ N   2  Use high  and isotopes with small E 0 or low  and isotopes with large E 0 for same total flux Example: N  (B,Li) ~ 12 N  (He,Ne),  (He,Ne) ~ 3.5  (B,Li) Want same neutrino energies (=same X-sections, L, physics=MSW, …): Peak energy ~  E 0, flux ~ N   2  Use high  and isotopes with small E 0 or low  and isotopes with large E 0 for same total flux Example: N  (B,Li) ~ 12 N  (He,Ne),  (He,Ne) ~ 3.5  (B,Li) NB:  : Accelerator dof versus N  : ion source dof Where is the cost/feasibility break-even point? NB:  : Accelerator dof versus N  : ion source dof Where is the cost/feasibility break-even point? NB: Peak energy determines suitable detector technology! NB: Peak energy determines suitable detector technology! Different isotopes: Some thoughts

June 30, 2008NuFact 08 - Walter Winter6 Small  13 : Optimize  13, MH, and CPV discovery reaches in  13 direction Small  13 : Optimize  13, MH, and CPV discovery reaches in  13 direction Large  13 : Optimize  13, MH, and CPV discovery reaches in (true)  CP direction Large  13 : Optimize  13, MH, and CPV discovery reaches in (true)  CP direction What defines “large  13 ”? A Double Chooz, Day Bay, T2K, … discovery? What defines “large  13 ”? A Double Chooz, Day Bay, T2K, … discovery? Beta beams for small versus large  13 (3  m 31 2 = eV 2  Optimization for small  13 Optimization for large  13 T2KK Beta beam NuFact

Beta beams with excellent  13 reach

June 30, 2008NuFact 08 - Walter Winter8 Minimum wish list Assume that Double Chooz … do not find  13 Assume that Double Chooz … do not find  13 Minimum wish list: Minimum wish list:  confirmation of  13 > 0 –3  mass hierarchy determination –3  CP violation determination For as small as possible (true)  13 Two unknowns here: Two unknowns here: –For what fraction of (true)  CP ? One has to make a choice (e.g. max. CP violation, for all  CP, for a CP fraction 50%, …) –How small  13 is actually good enough?  Minimal effort is a matter of cost!  Minimal effort is a matter of cost!

June 30, 2008NuFact 08 - Walter Winter9 Optimal  A matter of cost! Fix L/  =1.3, LSF = 1.6 Fix L/  =1.3, LSF = 1.6 The higher , the better (modulo detector!) The higher , the better (modulo detector!) (Huber, Lindner, Rolinec, Winter, 2005) 500 kt50 kt

June 30, 2008NuFact 08 - Walter Winter10 Optimal baseline? A matter of the performance indicator, detector, , … (Huber, Lindner, Rolinec, Winter, 2005) L/  =2.6 L/  =0.8 L/  =1.3L/  =2.1 Points towards two baselines!  CP = 0  CP =  /2

June 30, 2008NuFact 08 - Walter Winter11 Isotope pair comparison:  13 sensitivity MID (50kt), LSF=1 MID (50kt), LSF=1 Two set of baselines can be identified: Two set of baselines can be identified: –Short (L/  =0.8 or 2.6) –Long (magic) Long baseline better for B/Li if  > 350 Long baseline better for B/Li if  > 350 (Agarwalla, Choubey, Raychaudhuri, Winter, 2008) Magic baseline

June 30, 2008NuFact 08 - Walter Winter12 A matter of luminosity? Isotope pairs compared: Short vs. long baseline Gamma increase: ~ 3.5 Same physics for ~ 10 x luminosity (Agarwalla, Choubey, Raydchaudhuri, Winter, 2008) MID, 50kt

June 30, 2008NuFact 08 - Walter Winter13 MH and CPV for  ~ 500 MH: Use (B,Li) at magic baseline; energy! MH: Use (B,Li) at magic baseline; energy! CPV: Use (Ne,He) at short baseline (different detector?) CPV: Use (Ne,He) at short baseline (different detector?) MID, 50kt (Agarwalla, Choubey, Raydchaudhuri, Winter, 2008)  CP dependence

June 30, 2008NuFact 08 - Walter Winter14 Optimal green-field scenario for small  13 Use two baselines, two isotope pairs: Use two baselines, two isotope pairs: –(B,Li) at magic baseline for MH sensitivity Detector: MID, TASD, … –(Ne,He) at short baseline for CPV sensitivity Detector: TASD, WC, MID?, … Either one for  13 sensitivity Either one for  13 sensitivity (For two-baseline implementations, see: Coloma, Donini, Fernandez-Martinez, Lopez-Pavon, 2007; Agarwalla, Choubey, Raydchaudhuri, 2008)

Beta beams for large  13

June 30, 2008NuFact 08 - Walter Winter16 Minimum wish list Assume that Double Chooz finds  13 Assume that Double Chooz finds  13 Minimum wish list easy to define: Minimum wish list easy to define: –5  independent confirmation of  13 > 0 –3  mass hierarchy determination for any (true)  CP –3  CP violation determination for 80% (true)  CP For any (true)  13 in 90% CL D-Chooz allowed range!  What is the minimal (effort) beta beam for that?  What is the minimal (effort) beta beam for that? NB: Such a minimum wish list is non-trivial for small  13 NB: Such a minimum wish list is non-trivial for small  13 NB: CP fraction 80% comes from comparison with IDS-NF baseline etc. NB: CP fraction 80% comes from comparison with IDS-NF baseline etc. (Sim. from hep-ph/ ; 1.5 yr far det yr both det.)

June 30, 2008NuFact 08 - Walter Winter17 Minimal effort beta beam Minimal effort = Minimal effort = –One baseline only –Minimal  –Minimal LSF –Any L (green-field!) Example: Fix LSF and optimize L-  Example: Fix LSF and optimize L-   Sharp cutoff by MH from left, from CPV from bottom  Use fixed L >= 730 km to avoid fine-tuning (Winter, arXiv: ) Sensitivity for entire Double Chooz allowed range! LSF=1

June 30, 2008NuFact 08 - Walter Winter18 Luminosity scaling for fixed L What is the minimal LSF x  ? What is the minimal LSF x  ? (Ne,He): LSF = 1 possible (B,Li): LSF = 1 not sufficient (Ne,He): LSF = 1 possible (B,Li): LSF = 1 not sufficient But: If LSF >= 5:  can be lower for (B,Li) than for (Ne,He), because MH measurement dominates there (requires energy!) But: If LSF >= 5:  can be lower for (B,Li) than for (Ne,He), because MH measurement dominates there (requires energy!) (Winter, arXiv: ) (100kt) (500kt) only  < 150!

June 30, 2008NuFact 08 - Walter Winter19 Minimal  beta beam (Winter, arXiv: )

June 30, 2008NuFact 08 - Walter Winter20 Minimal beta beam at the CERN-SPS? (  fixed to maximum at SPS)

June 30, 2008NuFact 08 - Walter Winter21 Summary Optimal beta beam for small  13 : Uses two baselines, two isotope pairs: Optimal beta beam for small  13 : Uses two baselines, two isotope pairs: –(B,Li) at magic baseline for MH sensitivity Detector: MID, TASD, … –(Ne,He) at shorter (L/  ~ 1) baseline for CPV sensitivity Detector: TASD, WC, MID?, … Minimal beta beam for large  13 : One baseline only: L >> 500 km Minimal beta beam for large  13 : One baseline only: L >> 500 km –Use (B,Li) if high enough useful ion decays LSF ~ 5:  > 80 –Use (Ne,He) if LSF ~ 1:  > 190  Minimal  will be determined by baseline and Double Chooz result

Backup

June 30, 2008NuFact 08 - Walter Winter23 Comparison of setups (Huber, Lindner, Rolinec, Winter, 2005) 3 

June 30, 2008NuFact 08 - Walter Winter24 Mass hierarchy determination (Agarwalla, Choubey, Raychaudhuri, Winter, 2008)

June 30, 2008NuFact 08 - Walter Winter25 CP violation determination (Agarwalla, Choubey, Raychaudhuri, Winter, 2008)