Characterization of noise and transition shapes in superconducting transition-edge sensors using a pulsed laser diode Dan Swetz Quantum Sensors Group NIST.

Slides:



Advertisements
Similar presentations
Design of Experiments Lecture I
Advertisements

Noise Measurements W vs. T bath & Thermal Conductance Measurements NEP measurements at T bath = 311 mK for V BIAS = 1  V with predicted noise levels for.
LECTURE- 5 CONTENTS  PHOTOCONDUCTING MATERIALS  CONSTRUCTION OF PHOTOCONDUCTING MATERIALS  APPLICATIONS OF PHOTOCONDUCTING MATERIALS.
Adaptive Control of a Multi-Bias S-Parameter Measurement System Dr Cornell van Niekerk Microwave Components Group University of Stellebosch South Africa.
FTP Biostatistics II Model parameter estimations: Confronting models with measurements.
Recent progress with TES microcalorimeters and signal multiplexing J. Ullom NIST NASA GSFC SRON J. Beall R. Doriese W. Duncan L. Ferreira G. Hilton R.
SLAC National Accelerator Center
Swift/BAT Hard X-ray Survey Preliminary results in Markwardt et al ' energy coded color.
Heat conduction by photons through superconducting leads W.Guichard Université Joseph Fourier and Institut Neel, Grenoble, France M. Meschke, and J.P.
RHESSI/GOES Xray Analysis using Multitemeprature plus Power law Spectra. J.McTiernan (SSL/UCB)
RHESSI/GOES Xray Analysis using Multitemeprature plus Power law Spectra. J.McTiernan (SSL/UCB) ABSTRACT: We present spectral fits for RHESSI and GOES solar.
CCD-style imaging for the JCMT. SCUBA-2 technology  the ability to construct large format detector arrays  signal readouts that can be multiplexed To.
Experiments in X-Ray Physics Lulu Liu Partner: Pablo Solis Junior Lab 8.13 Lab 1 October 22nd, 2007.
TES Bolometer Array with SQUID readout for Apex
ESMRMB 2009 InfoRESO Fitting Tool for Arrays of Interrelated Datasets (FiTAID) Daniel G.Q. Chong 1 Johannes Slotboom 2 Christine Bolliger 1 Chris Boesch.
1 A Grating Spectrograph for the LCLS Philip Heimann Advanced Light Source Observe the spontaneous radiation spectrum of the individual undulators Observe.
X-Ray Spectroscopy. 1 eV 100 eV 10 eV Energy (keV) The need for high resolution X-ray spectroscopy Astrophysical Plasmas: Simulation of the emission from.
Andrea Giammanco CMS Tracker Week April DS ROD Prototype: “final” optohybrids “final” CCUM integrated in the rod with new FEC_to_CCUM adapter (Guido.
Chapter One Characteristics of Instrumentation بسم الله الرحمن الرحيم.
Principle of operation and limits of application
RF background, analysis of MTA data & implications for MICE Rikard Sandström, Geneva University MICE Collaboration Meeting – Analysis session, October.
Large area transition-edge sensor array for particle induced X-ray emission spectroscopy M Palosaari1, K Kinnunen1, I Maasilta1,
F. Arteche, C. Esteban Instituto Tecnológico de Aragón D. Moya, I. Vila, A. L. Virto, A. Ruiz Instituto de Física de Cantabria Powering requirements and.
SLR w SI = Simple Linear Regression with Seasonality Indices
Development of Low Temperature Detector S.C. Kim (SNU, DMRC)
2001 Mars Odyssey page 1 W o r k s h o p H E N D Institute for Space Research, June , 2003 Model-dependent deconvolution of HEND neutron data.
MANU2: status report Maria Ribeiro Gomes* for the Genoa Group IAP, 14-Nov-05 * pos-doc under TRN HPRN-CT
Curve-Fitting Regression
Fully depleted MAPS: Pegasus and MIMOSA 33 Maciej Kachel, Wojciech Duliński PICSEL group, IPHC Strasbourg 1 For low energy X-ray applications.
Tunable, resonant heterodyne interferometer for neutral hydrogen measurements in tokamak plasmas * J.J. Moschella, R.C. Hazelton, M.D. Keitz, and C.C.
Time Resolution of Thin LGADs Results from the Nov 2014 Beam Test at CERN Improvement in hand: Sensor Capacitance Measurements with  Front TCT 1 Hartmut.
Performance limits of a 55  m pixel CdTe detector G.Pellegrini, M. Lozano, R. Martinez, M. Ullan Centro Nacional de Microelectronica, Barcelona, 08193,
Instrumental Development in Japan for Future Missions 1.Si strip detectors(GLAST) 2.Supermirror technology 3.New hard-X/  detectors 4.TES calorimeters.
Metallic magnetic calorimeters (MMC) for high resolution x-ray spectroscopy Loredana GASTALDO, Markus LINCK, Sönke SCHÄFER, Hannes ROTZINGER, Andreas BURCK,
Looking for deterministic behavior from chaos GyuWon LEE ASP/RAL NCAR.
Status of Development of Metallic Magnetic Calorimeters A.Fleischmann, T. Daniyarov H. Rotzinger, M. Linck, C. Enss Kirchhoff-Institut für Physik Universität.
Optimization of Detectors for Time of Flight PET Marek Moszyński, Tomasz Szczęśniak, Soltan Institute for Nuclear Studies, Otwock-Świerk, Poland.
High gradient acceleration Kyrre N. Sjøbæk * FYS 4550 / FYS 9550 – Experimental high energy physics University of Oslo, 26/9/2013 *k.n.sjobak(at)fys.uio.no.
Optimizing the Energy Resolution of a Detector with Nonlinear Response and Non-Stationary Noise Goddard Space Flight Center DJ Fixsen (UMD) SH Moseley.
C03 High speed photon number resolving detector with titanium transition edge sensors Daiji Fukuda, Go Fujii, R.M.T. Damayanthi, Akio Yoshizawa, Hidemi.
Effects of Surrounding Materials on Proton-Induced Energy Deposition in Large Silicon Diode Arrays Christina L. Howe 1, Robert A. Weller 1, Robert A. Reed.
Search for Electron Neutrino Appearance in MINOS Mhair Orchanian California Institute of Technology On behalf of the MINOS Collaboration DPF 2011 Meeting.
Attenuation measurement with all 4 frozen-in SPATS strings Justin Vandenbroucke Freija Descamps IceCube Collaboration Meeting, Utrecht, Netherlands September.
DEAR SDD --> SIDDHARTA
Single photon counting detector for THz radioastronomy. D.Morozov 1,2, M.Tarkhov 1, P.Mauskopf 2, N.Kaurova 1, O.Minaeva 1, V.Seleznev 1, B.Voronov 1 and.
The development of the readout ASIC for the pair-monitor with SOI technology ~irradiation test~ Yutaro Sato Tohoku Univ. 29 th Mar  Introduction.
Jyly 8, 2009, 3rd open meeting of Belle II collaboration, KEK1 Charles University Prague Zdeněk Doležal for the DEPFET beam test group 3rd Open Meeting.
Metallic Magnetic Calorimeters for High-Resolution X-ray Spectroscopy D. Hengstler, C. Pies, S. Schäfer, S. Kempf, M. Krantz, L. Gamer, J. Geist, A. Pabinger,
Lecture 3-Building a Detector (cont’d) George K. Parks Space Sciences Laboratory UC Berkeley, Berkeley, CA.
Are the relativistic Fe lines really relativistic? A systematic analysis of the Fe K line from inner region of accretion disk of Neutron star LMXB with.
Simbol–X workshopMay 14th, 2007 The Simbol-X Detector Payload P. Laurent CEA/Saclay & APC.
Peterson xBSM Optics, Beam Size Calibration1 xBSM Beam Size Calibration Dan Peterson CesrTA general meeting introduction to the optics.
Comparison of filters for burst detection M.-A. Bizouard on behalf of the LAL-Orsay group GWDAW 7 th IIAS-Kyoto 2002/12/19.
Gusev K., JINR , Gerda meeting Spectrometric performance of Kurchatov Institute detectors.
Lessons Learned From the First Operation of the LCLS for Users Presented by Josef Frisch For the LCLS March 14, 2010.
Recent progress in ultra-low noise, ultra-low background detectors V. Marian, M.O. Lampert, B. Pirard, P. Quirin CANBERRA France (Lingolsheim) Workshop.
DESCRIPTION OF PIXIRAD  The PIXIRAD Imaging Counter is an INFN-Pisa Spin-off  It works in photon counting  Pulse discrimination with two thresholds.
Equalization of Medipix2 imaging detector energy thresholds using measurement of polychromatic X-ray beam attenuation Josef Uher a,b, Jan Jakubek c a CSIRO.
RPCs with Ar-CO2 mix G. Aielli; R.Cardarelli; A. Zerbini For the ATLAS ROMA2 group.
Rotation of 67P. Mottola et al. (2014): Lightcurve photomerty -> Spin period of h.
Design and testing of the Beam Delivery System collimators for the International Linear Collider J. L. Fernandez-Hernando STFC/ASTeC Daresbury Lab.
Optical Crosstalk in SiPM
Observation of a “cusp” in the decay K±  p±pp
The MICROMEGAS detector in CAST
Update on TB 2007 Xtal Irradiation Studies at H4
Mentor: Chris Kenney 12 August 2010
6.7 Practical Problems with Curve Fitting simple conceptual problems
LCLS Commissioning Parameters
Pre-installation Tests of the LHCb Muon Chambers
Study of e+e- pp process using initial state radiation with BaBar
Presentation transcript:

Characterization of noise and transition shapes in superconducting transition-edge sensors using a pulsed laser diode Dan Swetz Quantum Sensors Group NIST Boulder, CO Joel Ullom Doug Bennett Randy Doriese Gene Hilton Kent Irwin Carl Reintsema Dan Schmidt

How to Characterize TESs? Parameters: RSh RN n TC GTES CTES α β ΔE IV vs Tbath Power Law Fits Complex Z Pulses Noise Measurements: Models: 1-Body Model 2-Body Model New Parameters: M G2-Body C2-Body Goal: Develop a systematic way to combine TES measurements and optimally constrain TES models Only when we understand out detectors can we predict their behavior and optimize their performance

The Diode Laser: A new tool for X-ray TES characterization Vacuum Jacket Laser 1550 nm laser: 0.8 eV/photon (1 keV pulse = 1,200 photons) Computer controlled Variable Attenuator 3K Cold Attenuator Fiber Ferrule Flange Detector 50 mK box Collimator

New Capabilities using Laser Pulses Pulse Response above TC Pulses on demand Many trigger options Large range of possible energies Reliable low energy pulses 10,000 averaged pulses -8 -10 Log Detector Response (V) -12 -14 2 4 6 8 10 12 14 16 Time (ms) Detector Response vs Pulse Energy Detector Linearity 30 40 30 20 Detector Response (mV) Pulse Peak (mV) 20 10 10 0 1 2 3 4 5 0 2 4 6 8 10 12 14 Time (ms) Pulse Energy (keV)

Goal: An optimized TES for materials analysis at 7 keV* The Test Detector 600 mm 350 μm square Mo/Cu bilayer 0.1 μm-thick Mo 0.2 μm-thick Cu 7 interdigitated normal Cu bars 0.5 μm thick 90% TES length bismuth film absorber 1.5 μm thick 600 μm SiN frame Overlapping perforations in SiN membrane to control GTES 350 mm Current Goal: An optimized TES for materials analysis at 7 keV* perforations Interdigitated normal bars * Doriese 1EX07

TES Modeling and Characterization Simple TES Hypothesis: SiN is adding a dangling 2nd body Estimate from geometry*: Cdangling ~ 0.1 pJ/K, ~ 5% of CTES Questions: Are TESs 1-body (simple) or 2-body (dangling) ? What are the effects on parameters? Can the dangling body explain (part of) the unexplained excess high-frequency noise? Dangling TES * K. Rostem, et. al, Proc. SPIE, 7020, 70200L (2008)

Parameter Extraction Methodology RSh RN SC Noise IV vs Tbath Power Law Fits Pulses above Tc n TC RSh 260 uΩ RN 10.7 mΩ n 3.3 TC 109 mK GTES 118 pW/K CTES 1.7 pJ/K GTES CTES β Cdangling Gdangling α M ΔE

Parameter Extraction Methodology RSh RN SC Noise IV vs Tbath Power Law Fits Pulses above Tc n TC RSh 260 uΩ RN 10.7 mΩ n 3.3 TC 109 mK GTES 118 pW/K CTES 1.7 pJ/K GTES Measurements at 10—80 % bias of Rnormal in steps of 10% CTES Complex Z β Pulses Noise β Cdangling Gdangling α M ΔE

Parameter Extraction Methodology RSh RN SC Noise IV vs Tbath Power Law Fits Pulses above Tc n TC RSh 260 uΩ RN 10.7 mΩ n 3.3 TC 109 mK GTES 118 pW/K CTES 1.7 pJ/K GTES Measurements at 10—80 % bias of Rnormal in steps of 10% CTES Complex Za β Pulsesb β Cdangling Gdangling Cdangling GoF CZ αCZ αpulse GoF pulse Dangling Model Gdangling F α Goodness of Fit Phase Space M ΔE a) Bennett et. al., Proc. AIP, vol. 1185. pp 737-40, (2009) b) Bennett et. al., APL submitted (2010)

Parameter Extraction Methodology RSh RN SC Noise IV vs Tbath Power Law Fits Pulses above Tc n TC RSh 260 uΩ RN 10.7 mΩ n 3.3 TC 109 mK GTES 118 pW/K CTES 1.7 pJ/K GTES Measurements at 10—80 % bias of Rnormal in steps of 10% CTES Complex Za β Pulsesb β Cdangling Gdangling Cdangling GoF CZ αCZ αpulse GoF pulse Dangling Model Gdangling α Noise Goodness of Fit Phase Space F M M GoF noise ΔE a) Bennett et. al., Proc. AIP, vol. 1185. pp 737-40, (2009) b) Bennett et. al., APL submitted (2010)

Parameter Extraction Methodology RSh RN SC Noise IV vs Tbath Power Law Fits Pulses above Tc n TC RSh 260 uΩ RN 10.7 mΩ n 3.3 TC 109 mK GTES 118 pW/K CTES 1.7 pJ/K GTES Measurements at 10—80 % bias of Rnormal in steps of 10% CTES Complex Za β Pulsesb β Cdangling Gdangling Cdangling GoF CZ αCZ αpulse GoF pulse Dangling Model Gdangling α Noise Goodness of Fit Phase Space M ΔE M GoF noise ΔE a) Bennett et. al., Proc. AIP, vol. 1185. pp 737-40, (2009) b) Bennett et. al., APL submitted (2010)

Departure from simple model at 1.5 ms Pulse Fits Good Fit Why 2d GoF phase space? Exclude local minima Poor estimate of error on data Simple model GoF = 1.58 Dangling model achieves GoF = 14 High Cdang, Gdang excluded Bad Fit Departure from simple model at 1.5 ms

Goodness of Fit: CZ and Noise Good Fit Good Fit Bad Fit Bad Fit Simple model CZ GoF = 4.5 Dangling model achieves GoF = 6.4 Simple model noise GoF = 11.3 Dangling model achieves GoF =24 Large parameter space excluded, particularly high Cdang, Gdang regions. Reasonable constraints on both Cdangling and Gdangling 13

α and M are largely unaffected by dangling parameters Nearly identical values from CZ fits 1-body model predicts αpulse = 310, αCZ = 314 and M = 1.52 Conclusion: Can estimate using simple model

Dangling Body Affects Noise and Energy Resolution bad fit region M-noise 2.28 eV = Simple model energy resolution 2.34 eV = Simple model with CTES + Cdangling 2.5—3.1eV = Dangling model energy resolution Dangling noise explains increased mid-frequency noise at ~100-1000 Hz Dangling noise degrades resolution by ~ 10--30%

Conclusions and Future Plans Diode laser is a useful tool for device characterization Device is described by a dangling two-body model Dangling parameters have minimal affect on alpha and excess noise Dangling body significantly degrades energy resolution Repeat analysis on more devices Very preliminary spectrum of Mn Kα Similar 9-bar device ΔEFWHM = 3.64 eV

Fin

Energy Resolution vs Gdangling

Pulse Fits Evidence for dangling models Dangling model fits data well Requires High S/N – 4000 pulses averaged Simple model: overshoots data at early times undershoots data at late times