MeV Gamma Ray Nuclear Astrophysics Yesterday: Science and Observations

Slides:



Advertisements
Similar presentations
High Energy Astrophysics
Advertisements

CR Workshop – Leiden (H), 14 – 18 / 03 / 2011
Science results. N. Produit INTEGRAL science results 2 INTEGRAL is on a 3-days orbit with apogee at km and perigee at km. Maximizes time.
Solar flare observations with INTEGRAL/SPI Solar flare observations with INTEGRAL/SPI IEEC, Barcelona, September 23, 2004 (M. Gros, J. Kiener, V. Tatischeff.
GLAST The GLAST Balloon Flight experiment was performed with the collaboration of NASA Goddard Space Flight Center, Stanford Linear Accelerator Center,
Detection of Gamma-Rays and Energetic Particles
Gamma-Ray Astronomy Call no Assoc. Prof. Markus Böttcher Clippinger # 339 Phone:
Towards a Compton Telescope for Gamma-Ray Astronomy in the MeV range CSNSM-Orsay, AIM/CEA-Saclay, APC-Paris, MPE-Garching, NSI-Copenhagen AHEAD meeting,
RHESSI Observations of Gamma- Ray Lines from Solar Flares Albert Y. Shih 1, David M. Smith 2, Robert P. Lin 1, Richard A. Schwartz 3, Gerald H. Share 4,
Terrestrial Gamma-ray Flashes. Gamma Ray Astronomy Beginning started as a small budget research program in 1959 monitoring compliance with the 1963 Partial.
Probing Ion Acceleration by Observing Gamma Rays from Solar Flares Albert Y. Shih 1 NASA Advisor: Brian R. Dennis 2 Faculty Advisor: Robert P. Lin 1 1.
The Extreme Universe of Gamma-ray Astronomy Professor Lynn Cominsky Department of Physics and Astronomy Sonoma State University.
Temporal Variability of Gamma- Ray Lines from the X-Class Solar Flare of 2002 July 23 Albert Y. Shih 1,2, D. M. Smith 1, R. P. Lin 1,2, S. Krucker 1, R.
Simulations of Advanced Compton Telescopes in a Space Radiation Environment Andreas Zoglauer, C.B. Wunderer, S.E. Boggs, UC Berkeley – Space Sciences Laboratory.
1 Gamma-Ray Astronomy with GLAST May 24, 2008 Toby Burnett WALTA meeting.
High Energy Detection. High Energy Spectrum High energy EM radiation:  (nm)E (eV) Soft x-rays X-rays K Soft gamma rays M Hard gamma.
Simulations with MEGAlib Jau-Shian Liang Department of Physics, NTHU / SSL, UCB 2007/05/15.
Hiroyasu Tajima Stanford Linear Accelerator Center Nov 3–8, 2002 VERTEX2002, Kailua-Kona, Hawaii Gamma-ray Polarimetry ~ Astrophysics Application ~
Lecture 2-Building a Detector George K. Parks Space Sciences Laboratory UC Berkeley, Berkeley, CA.
The Nuclear Compton Telescope (NCT) Project Hsiang-Kuang Chang Department of Physics and Institute of Astronomy National Tsing Hua University Hsinchu,
Gamma Spectroscopy HPT TVAN Technical Training
Neutron Generation and Detection Lee Robertson Instrument & Source Division Oak Ridge National Laboratory 17 th National School on Neutron and X-ray Scattering.
Future instrumentation for high-energy solar physics a partial and partial survey David Smith.
The Nuclear Compton Telescope (NCT)
Radiation conditions during the GAMMA-400 observations:
Milagro Gus Sinnis Milagro NSF Review July 18-19, 2005 Milagro: A Synoptic VHE Gamma-Ray Telescope Gus Sinnis Los Alamos National Laboratory.
Survey of the Universe Tom Burbine
R&T télescope APC1INFIERI meeting – 15 juillet 2014 DSSD detectors development for a space Compton telescope P. Laurent, Y. Dolgorouky, M. Khalil,
Introduction to gamma-ray astronomy GLAST-Large Area Telescope Introduction to GLAST Science New way of studying astrophysics Schedule of GLAST project.
Gamma-Ray Bursts observed with INTEGRAL and XMM- Newton Sinead McGlynn School of Physics University College Dublin.
Jacques Paul Soft Gamma-Ray Astronomy 23 January 2001 Rencontres de Moriond Les Arcs Expected Impact on VHE Phenomena Panorama in the Coming Years INTEGRAL.
Gamma-Ray Telescopes. Brief History of Gamma Ray Astronomy 1961 EXPLORER-II: First detection of high-energy  -rays from space 1967 VELA satelllites:
Hard X and Gamma-ray Polarization: the ultimate dimension (ESA Cosmic Vision ) or the Compton Scattering polarimetery challenges Ezio Caroli,
Project Gamma By Wylie Ballinger and Sam Russell Visit For 100’s of free powerpoints.
NASA GSFC WFF PSL CSBF SWRI Balloon Workshop Jack Tueller 1 Gamma-Ray Astronomy From Balloons Jack Tueller Balloon Project Scientist.
The GLAST Large Area Telescope – Design, construction, test and calibration Luca Latronico (INFN-Pisa), Gloria Spandre (INFN-Pisa) on behalf of the GLAST.
Space-based Gamma-ray Astronomy Liz Hays (NASA Goddard Space Flight Center)
Instrumental Development in Japan for Future Missions 1.Si strip detectors(GLAST) 2.Supermirror technology 3.New hard-X/  detectors 4.TES calorimeters.
Performances of epitaxial GaAs detectors E. Bréelle, H. Samic, G. C. Sun, J. C. Bourgoin Laboratoire des Milieux Désordonnés et Hétérogènes Université.
Discovery of  rays from Star-Forming Galaxies New class of nonthermal sources/gamma-ray galaxies (concept of temperature breaks down at high energies)
Aa GLAST Particle Astrophysics Collaboration Instrument Managed and Integrated at SLAC/Stanford University The Gamma-ray Large Area Space Telescope (GLAST)
Prof. Steven Boggs UCB Space Sciences Laboratory SPI Instrument Team Activities Prof. Steven Boggs (PI) Dr. Cornelia Wunderer (SPI CoI) Dr. Emrah Kalemci.
Observational techniques meeting #15
THE COMPTON GAMMA RAY OBSERVATORIE By: Windell Barfield and Landris Baggs.
Development of a Segmented Planar Germanium Imaging Detector
GLAST The GLAST Balloon Flight experiment was performed with the collaboration of NASA Goddard Space Flight Center, Stanford Linear Accelerator Center,
The Universe >100 MeV Brenda Dingus Los Alamos National Laboratory.
Development of an Electron-Tracking Compton Camera with a Gaseous TPC and a Scintillation Camera for a Balloon-borne experiment (SMILE) Kazuki Ueno, Toru.
Sources emitting gamma-rays observed in the MAGIC field of view Jelena-Kristina Željeznjak , Zagreb.
In high energy astrophysics observations, it is crucial to reduce the background effectively to achieve a high sensitivity, for the source intensity is.
The High Energy Gamma-Ray Sky after GLAST Julie McEnery NASA/GSFC Gamma-ray Large Area Space Telescope.
Fermi Gamma-ray Space Telescope Searches for Dark Matter Signals Workshop for Science Writers Introduction S. Ritz UCSC Physics Dept. and SCIPP On behalf.
Gamma-ray Large Area Space Telescope -France -Germany -Italy -Japan -Sweden -USA Energy Range 10 keV-300 GeV. GLAST : - An imaging gamma-ray telescope.
Room-Temperature Semiconductors: From concepts to applications Zhong He Nuclear Engineering and Radiological Sciences Department The University of Michigan,
Proposed Laboratory Simulation of Galactic Positron In-Flight Annihilation in Atomic Hydrogen Benjamin Brown, Marquette University, Milwaukee, WI, USA.
A. Takada (Kyoto University)  Our motivation   -PIC and MeV gamma-ray telescope   -PIC applications  New type  -PIC.
High Energy Observational Astrophysics. 1 Processes that emit X-rays and Gamma rays.
 Electromagnetic Radiation › Gamma rays, X-rays, UV light, visible light, infrared radiation, microwaves, and radio waves › All energy travels through.
Hiroyasu Tajima Stanford Linear Accelerator Center May 5, 2005 SLAC GLAST lunch talk Development of Next Generation Compton Gamma-ray Telescope.
Gamma Spectrometry beyond Chateau Crystal J. Gerl, GSI SPIRAL 2 workshop October 5, 2005 Ideas and suggestions for a calorimeter with spectroscopy capability.
Solar gamma-ray and neutron registration capabilities of the GRIS instrument onboard the International Space Station Yu. A. Trofimov, Yu. D. Kotov, V.
John Tomsick UC Berkeley/Space Sciences Lab for the COSI collaboration
Comparison of GAMMA-400 and Fermi-LAT telescopes
E > 100 keV activities at DTU Space ½ MeV Telescope Design
R. Bucˇık , K. Kudela and S. N. Kuznetsov
Gamma-ray Albedo of the Moon Igor V. Moskalenko (Stanford) & Troy A
Neutron Detection with MoNA LISA
A.Takada, A.Takeda, T.Tanimori
Observational techniques meeting #11
Presentation transcript:

MeV Gamma Ray Nuclear Astrophysics Yesterday: Science and Observations Today: Instrumentation (Krause 2004) Steven Boggs UC Berkeley Department of Physics

Nuclear Gamma-Rays Atmosphere is opaque at these energies.

Gamma-ray interactions Index of refraction ~1.0000 Penetration ≥ cm into materials Standard mirrors & lenses don’t work

Gamma Ray Detectors Solid State Scintillators good/excellent resolution (<2%) may require cooling finer position resolution more channels/power Liquid Xe NaI, CsI, BGO Scintillators high Z large volume room temperature moderate/poor resolution (3-10%) Si Semiconductor CZT Semiconductor Ge Semiconductor

The radiation environment The Space Radiation Environment Sun through solar flares: photons, charged particles The radiation environment Radiation belts: Trapped protons (SAA) & resulting activation, electrons Secondaries induced by cosmic-ray interaction with upper atmosphere: Albedo photons, neutrons, electrons, positrons Cosmic rays: Photons Protons (& activation) Alphas Ions Electrons Positrons In space our little detector is exposed to a very unfriendly environment

Compton Gamma-Ray Observatory (1991-2000) COMPTEL (0.8-30 MeV) OSSE (50 keV – 10 MeV) BATSE (20-600 keV) EGRET (20 MeV – 30 GeV)

Spectroscopy, no Imaging “light bucket” Galactic Center Positrons (Purcell et al., 1993)

(from P. von Ballmoos)

Coded Aperture Imaging pinhole camera…. with lots of pinholes Good for: point sources photons that stop in the mask (<0.2 MeV)

INTErnational Gamma-Ray Astrophysics Laboratory (launched October 2002) IBIS (15 keV-10 MeV) JEM-X (3-35 keV) E/DE ~ 10, Df ~ 20’ E/DE ~ 500, Df ~ 2º SPI (30 keV-8 MeV) OMC (500-600 nm)

IBIS/INTEGRAL ISGRI: 128x128 CdTe array (4x4x2 mm3) PICsIT: 64x64 CsI array (8.4x8.4x30 mm3)

IBIS Galactic Plane Survey (Bird & Walter 2004)

SPI/INTEGRAL 19 Ge detectors

SPI Positron Map (Weidenspointner et al., 2008)

Compton Gamma-Ray Observatory (1991-2000) COMPTEL (0.8-30 MeV) OSSE (50 keV – 10 MeV) BATSE (20-600 keV) EGRET (20 MeV – 30 GeV)

COMPTEL - Compton Imaging cos  = 1+mc2(1/E2-1/E) COMPTEL Detectors D1: 4188 cm2 liq. scint. D2: 8620 cm2 NaI DE: 5-8% (FWHM) DX ~ DY ~ 2 cm (1s) DZ ~ 3 cm (1s) Dt ~ 0.25ns COMPTEL Performance 0.8-30 MeV E/DE ~ 9-14 (FWHM) Df ~3º Aeff < 20 cm2 FOV ~ 1str (Schoenfelder et al., 1993, ApJS 86, 657)

26Al (1.809 MeV), ~1Myr (Oberlack et al., 1996; Pluschke et al., 2001)

Compton Telescopes: Then & Now ACT Enabling Detectors 1 mm3 resolution DE/E ~ 0.2-1% 10-20% efficiency background rejection polarization 3 decades… CGRO/COMPTEL ~40 cm3 resolution DE/E ~ 10% 0.1% efficiency

Overview of the Nuclear Compton Telescope Steven Boggs, UCB A balloon-borne g-ray spectrometer, polarimeter & imager Steven Boggs, UCB NCT Collaboration: Berkeley, NTHU, NCU, NSPO, NUU, LBNL, CESR

Nuclear Compton Telescope Heart of NCT: Cross Strip 3-D GeDs balloon payload Heart of NCT: Cross Strip 3-D GeDs 37x37 strips 2-mm pitch 15-mm thickness 81000 mm3 volume 1.6 mm3 localization ~2.1-keV noise resolution

3D GeD Design (Luke et al. 1992, 1994)

Single-Pixel Spectra (56Co) excellent GeD Spectroscopy plus full 3-D positioning

60Co Laboratory Tests 1.173, 1.333 MeV 1.173 MeV processed image

Next flight, May 2009 northern hemisphere primarily compact objects

The 2005 balloon flight from Fort Sumner Impressions from the NCT 2009 Balloon flight

BGO shield Pre-Amps lN2 dewar

Rotor Differential GPS Solar Panels Electronics Bay Detector CSBF SIP

4D sin  = n  Alternate layers of high/low Z materials ex. W/Si D ~ 25 Å (technological limit) < 1 Å (0.18 Å @ 68 keV) ~ 30’ f ~ 10 m

(Suntzeff et al.1992; Diehl & Timmes 1998) SN 1987A in the LMC ~110-4 M (Suntzeff et al.1992; Diehl & Timmes 1998) Blue supergiant (~20 M, 6 M He core) (Arnett et al., 1989) Spherical models predict 44Ti < 1000 km/s 56Ni mixed out to ~3000 km/s (0.7 keV at 68 keV) (Motizuki & Kumagai 2004)

Bragg Scattering 2D sin  = n  Use a crystal to bend (“focus”) the -rays D ~ 1 Å (crystal spacing) < 1 Å (0.014 Å @ 0.847 MeV) ~ 10’ f ~ 60 m

Laue Lens: Focusing g-rays von Ballmoos et al., CESR, Toulouse