New gaseous detectors: the application of pixel sensors as direct anode NIKHEFAuke-Pieter Colijn Alessandro Fornaini Harry van der Graaf Peter Kluit Jan.

Slides:



Advertisements
Similar presentations
Detector R&D Jan Timmermans Programme: ≥ 2003
Advertisements

Novel Gas-based Detection Techniques
Amsterdam, March 31, 2003 P. Colas - European R&D for gaseous trackers 1 European gaseous tracking hardware HistoryHistory GEM and MicromegasGEM and Micromegas.
M. Chefdeville NIKHEF, Amsterdam MPGD, Hawaii 07
Maximilien Chefdeville NIKHEF, Amsterdam RD51, Amsterdam 17/04/2008
Beijing, August 18, 2004 P. Colas - Micromegas for HEP 1 Recent developments of Micromegas detectors for High Energy Physics Principle of operationPrinciple.
Bulk Micromegas Our Micromegas detectors are fabricated using the Bulk technology The fabrication consists in the lamination of a steel woven mesh and.
3-D simulation of Si-Prot Charge distribution, signal development D. Attié, P. Colas, E. Delagnes, S. Turnbull - Introduction - Orders of magnitude - Simulation.
Position sensing in a GEM from charge dispersion on a resistive anode Bob Carnegie, Madhu Dixit, Steve Kennedy, Jean-Pierre Martin, Hans Mes, Ernie Neuheimer,
Status ‘Si readout’ TPC at NIKHEF NIKHEFAuke-Pieter Colijn Alessandro Fornaini Harry van der Graaf Peter Kluit Jan Timmermans Jan Visschers Saclay CEA.
Drift Chambers Drift Chambers are MWPCs where the time it takes for the ions to reach the sense wire is recorded. This time info gives position info:
Readout of a TPC with the MEDIPIX2 CMOS chip as direct anode Saclay/DapniaP. Colas Y. Giomataris NIKHEFA. Fornaini H. van der Graaf J. Timmermans J. Visschers.
GridPix for Dual Phase LAr/LXe experiments. Micro Patterned Gaseous Detectors High field created by Gas Gain Grids Most popular: GEM & Micromegas Ideally:
Kolympari, Crete, June 16, Study of avalanche fluctuations and energy resolution with an InGrid-TimePix detector P. Colas Progress report, based.
New Developments in Gaseous Tracking and Imaging Detectors Harry van der Graaf Nikhef, Amsterdam on behalf of the GridPix/Gossip group IWORID 2008 Helsinki.
Carleton University A. Bellerive, K. Boudjemline, R. Carnegie, A. Kochermin, J. Miyamoto, E. Neuheimer, E. Rollin & K. Sachs University of Montreal J.-P.
ECFA Meeting, Valencia – November 8, First TimePix tests at CERN David Attié ECFA Meeting – Valencia – 8 November 2006.
1 Pixel readout for a TPC LCWS 2010 – Tracking TPC R&D session 27 March 2010 Jan Timmermans On behalf of the Bonn/CERN/Freiburg/Nikhef/Saclay groups.
Timepix-3 test All-ceramic InGrid The focusing TPC
GOSSIP : Gas On Slimmed SIlicon Pixels NIKHEFAuke-Pieter Colijn Alessandro Fornaini Harry van der Graaf Peter Kluit Jan Timmermans Jan Visschers Saclay.
Detector Research & Development RECFA, NIKHEF, Amsterdam. Sept 23, 2005 Harry van der Graaf, NIKHEF, Amsterdam.
Annual Meeting 2008 – October 6 th 1 David Attié P. Colas, X. Coppolani, E. Delagnes, A. Giganon, I. Giomataris Status of Saclay.
Orsay, January 12, 2005P. Colas - Resistive anode Micromegas1 Dan Burke 1, P. Colas 2, M. Dixit 1, I. Giomataris 2, V. Lepeltier 3, A. Rankin 1, K. Sachs.
1 Development of the input circuit for GOSSIP vertex detector in 0.13 μm CMOS technology. Vladimir Gromov, Ruud Kluit, Harry van der Graaf. NIKHEF, Amsterdam,
GOSSIP a new vertex detector for ATLAS Harry van der Graaf NIKHEF, Amsterdam Univ. of Bonn, Nov 23, 2006.
An Integrated Single Electron Readout System for the TESLA TPC Ton Boerkamp Alessandro Fornaini Wim Gotink Harry van der Graaf Dimitri John Joop Rovekamp.
Micropattern on CMOS pixels NIKHEFMaximilien Chefdeville Auke-Pieter Colijn Alessandro Fornaini Harry van der Graaf Peter Kluit Jan Timmermans Jan Visschers.
21 April 2004LCWS 2004 Paris1 Readout of a TPC using the Medipix2 CMOS pixel sensor (detection of single electrons on a direct pixel segmented anode) NIKHEF:
The detection of single electrons using the MediPix2/Micromegas assembly as direct pixel segmented anode NIKHEF: A. Fornaini, H. van der Graaf, P. Kluit,
Beijing, Feb.6, 2007 P. Colas - Micromegas TPC 1 Micromegas TPC studies in a 5 Tesla magnetic field with a resistive readout D. Attié, A. Bellerive, K.
Micromegas TPC Beam Test Result H.Kuroiwa (Hiroshima Univ.) Collaboration with Saclay, Orsay, Carlton, MPI, DESY, MSU, KEK, Tsukuba U, TUAT, Kogakuin U,
Timepix at NIKHEFMedipix meeting, CERN – Some recents results at NIKHEF M. Chefdeville, E. Bilevych, H. van de Graaf, J. Timmermans D. Attié,
The Gossip gaseous detector for the ATLAS Upgraded ‘SC’T Harry van der Graaf Nikhef, Amsterdam on behalf of the GridPix/Gossip group ATLAS Tracker Upgrade.
1 Readout of a TPC by Means of the MediPix CMOS Pixel Sensor NIKHEFAuke-Pieter Colijn Arno Aarts Alessandro Fornaini Maximilien Chefdeville Harry van der.
23 March 2005International TPC R&D Meeting Berkeley 1 Readout of a TPC using the Medipix2 CMOS pixel sensor (detection of single electrons on a direct.
GEM basic test and R&D plan Takuya Yamamoto ( Saga Univ. )
GOSSIP & the ATLAS SCT Upgrade Max Chefdeville NIKHEF, Amsterdam ATLAS Upgrade Workshop CERN, Oct 1, 2006.
O.Bezshyyko, 2-nd French-Ukrainian workshop on the instrumentation developments for HEP, October 1-3, Orsay Taras Shevchenko National University of Kyiv.
PNPI R&D on based detector for MUCH central part (supported by INTAS ) E. Chernyshova, V.Evseev, V. Ivanov, A. Khanzadeev, B. Komkov, L.
GOSSIP : a vertex detector combining a thin gas layer as signal generator with a CMOS readout pixel array Gas On Slimmed SIlicon Pixels.
you me  when it all started to work  progress made  outlook.
1 Update on Silicon Pixel Readout for a TPC at NIKHEF LCWS08 - Chicago 19 Nov 2008 Jan Timmermans NIKHEF.
Snowmass, August, 2005P. Colas - InGrid1 M. Chefdeville a, P. Colas b, Y. Giomataris b, H. van der Graaf a, E.H.M.Heijne c, S.van der Putten a, C. Salm.
1 The Silicon TPC System EUDET Extended SC meeting 31 August 2010 Jan Timmermans NIKHEF/DESY.
1 Status ‘Si readout’ TPC at NIKHEF NIKHEFMaximilien Chefdeville Auke-Pieter Colijn Alessandro Fornaini Harry van der Graaf Peter Kluit Jan Timmermans.
1 The pixel readout of TPCs Max Chefdeville, NIKHEF, Amsterdam.
Gossip/GridPix – guidelines, facts, and questions for review Version 1: Norbert Version 2: Tatsuo Version 3: Werner.
November 8, 2006ECFA ILC Workshop1 Recent developments for digital TPC readout Jan Timmermans - NIKHEF Micro Pattern Gas Detector: GridPix Integration.
1 The Silicon TPC System EUDET Extended SC meeting 27 August 2007 Jan Timmermans NIKHEF.
LCWS Bangalore, March 13, 2006 P. Colas, Digital TPC R&D1 R&D for a digital TPC The SiTPC project The digital TPC concept and advantages VLSI electronics:
On behalf of the LCTPC collaboration VCI13, February 12th, 2013 Large Prototype TPC using Micro-Pattern Gaseous Detectors  David Attié 
IEEE/NSS Oct 22, Electron Counting and Energy Resolution Study from X-ray conversion in Argon Mixtures with an InGrid-TimePix detector. D. ATTIÉ.
Status report NIKHEF NIKHEFAuke-Pieter Colijn Alessandro Fornaini Harry van der Graaf Peter Kluit Jan Timmermans Jan Visschers Saclay CEA DAPNIAMaximilien.
The digital TPC: the ultimate resolution P. Colas GridPix: integrated Timepix chips with a Micromegas mesh.
Development of a Front-end Pixel Chip for Readout of Micro-Pattern Gas Detectors. Vladimir Gromov, Ruud Kluit, Harry van der Graaf. NIKHEF, Amsterdam,
Detector R & D Harry van der Graaf NIKHEF Jamboree Dec 19, 2006.
Timepix in EUDet – CERN contribution Michael Campbell PH Department CERN Geneva, Switzerland Spokesman, Medipix2 Collaboration.
On behalf of the LCTPC collaboration -Uwe Renz- University of Freiburg Albert-Ludwigs- University Freiburg Physics Department.
Vienna Conference on Instrumentation – February 27, D. Attié, A. Bellerive, K. Boudjemline, P. Colas, M. Dixit, A. Giganon,
Gossip : Gaseous Pixels Els Koffeman (Nikhef/UvA) (Harry van der Graaf, Jan Timmermans, Jan Visschers, Maximilien Chefdeville, Vladimir Gromov, Ruud Kluit,
The GridPix and Gossip gaseous detectors for the ATLAS Upgraded ‘SC’T Harry van der Graaf Nikhef, Amsterdam on behalf of the GridPix/Gossip group ATLAS.
GOSSIP : a vertex detector combining a thin gas layer as signal generator with a CMOS readout pixel array NIKHEFAuke-Pieter Colijn Alessandro Fornaini.
TPC for 4-th concept S.Popescu IFIN-HH, Bucharest.
Experience from ZEUS Microvertex detector is running for more than five years without access! E.N Koffeman NIKHEF & University of Amsterdam.
Micromegas module for ILC-TPC
TPC Paul Colas Technical meeting, Lyon.
R&D for a digital TPC The SiTPC project
Avalanche flutuations with InGrid/TimePix
Ionization detectors ∆
TPC chamber for Medipix2/TimePix
Presentation transcript:

New gaseous detectors: the application of pixel sensors as direct anode NIKHEFAuke-Pieter Colijn Alessandro Fornaini Harry van der Graaf Peter Kluit Jan Timmermans Jan Visschers Maximilien Chefdeville Saclay CEA DAPNIAPaul Colas Yannis Giomataris Arnaud Giganon Univ. Twente/Mesa+Jurriaan Schmitz CERN/Medipix ConstmEric Heijne Xavie Llopart Michael Campbell Thanks to: Wim Gotink Joop Rovenkamp Harry van der Graaf NIKHEF, Amsterdam IEEE-NSS Conference, Rome N17-4, Oct 19, 2004

Original motivation: Si pixel readout for the Time Projection Chamber (TPC) at TESLA (now ILC)

Time Projection Chamber (TPC): 2D/3D Drift Chamber The Ultimate Wire (drift) Chamber E-field (and B-field) Wire Plane + Readout Pads track of charged particle Wire plane Pad plane

1995Giomataris & Charpak: MicroMegas Wireless wire chambers: better granularity

1996: F. Sauli: Gas Electron Multiplier (GEM) Wireless wire chambers: better granularity

Problem With wires: measure charge distribution over cathode pads: c.o.g. is a good measure for track position; With GEMs or Micromegas: narrow charge distribution (only electron movement) wire avalanche Cathode pads GEM Micromegas Solutions:- cover pads with resisitive layer - ‘Chevron’ pads - many small pads: pixels

Cathode foil Gem foils Support plate Medipix 2 Drift Space The MediPix2 pixel CMOS chip We apply the ‘naked’ MediPix2 chip without X-ray convertor!

MediPix2 pixel sensor Brass spacer block Printed circuit board Aluminum base plate Micromegas Cathode (drift) plane 55 Fe Baseplate Drift space: 15 mm MediPix2 & Micromegas Very strong E-field above (CMOS) MediPix!

We always knew, but never saw: the conversion of 55 Fe quanta in Ar gas No source, 1s 55 Fe, 1s 55 Fe, 10s Signals from a 55 Fe source (220 e- per photon); 300  m x 500  m clouds as expected 14 mm The Medipix CMOS chip faces an electric field of 350 V/50 μm = 7 kV/mm !!

Eff = e -Thr/G Thr: threshold setting (#e-) G: Gas amplification Prob(n) = 1/G. e -n/G no attachment homogeneous field in avalanche gap low gas gain  No Curran or Polya distributions but simply: Single electron efficiency

New trial: NIKHEF, March 30 – April 2, 2004 Essential: try to see single electrons from cosmic muons (MIPs) Pixel preamp threshold: 3000 e- Required gain: 5000 – New Medipix New Micromegas Gas: He/Isobutane 80/20 Ar/Isobutane 80/20 He/CF4 80/20 …… It Works!

He/Isobutane 80/20 Modified MediPix Sensitive area: 14 x 14 x 15 mm 3 Drift direction: Vertical max = 15 mm

He/Isobutane 80/20 Modified MediPix

He/Isobutane 80/20 Modified MediPix

He/Isobutane 80/20 Non Modified MediPix Americium Source

He/Isobutane 80/20 Modified MediPix

He/Isobutane 80/20 Modified MediPix δ-ray!

After 24 h cosmic ray data and 3 broken chips: We can reach very high gas gains with He-based gases (> 100k!) The MedPix2 chip can withstand strong E-fields (10 kV/mm!) Discharges ruin the chip immediately (broke 4 in 4 days!) Measured efficiency: > 0.9; consistent with high gain Seen MIPs, clusters, δ-rays, electrons, α ‘s…… - In winter 2004: beam tests (dE/dX: e-, pions, muons,……), X-rays (ESRF, Grenoble); - Development of TimePix 1: TDC per pixel instead of counter

Integrate GEM/Micromegas and pixel sensor: InGrid ‘GEM’ ‘Micromegas’ Monolitic detector by ‘wafer post processing’

‘Try first Micromegas: simpel’ By ‘wafer post processing’ at MESA+, Univ. of Twente InGrid

HV breakdowns 4) Protection Network 1) High-resistive layer 2) High-resistive layer 3) ‘massive’ pads

Other application: GOSSIP: tracker for intense radiation environment: Vertex detector for SLHC

GOSSIP: Gas On Slimmed SIlicon Pixels CMOS pixel array MIP Micromegas Drift gap: 1 mm Max drift time: 15 ns MIP CMOS chip ‘slimmed’ to 30 μm Cathode foil An thin TPC as vertex detector

Essentials of GOSSIP: Generate charge signal in gas instead of Si (e-/ions versus e-/holes) Amplify # electrons in gas (electron avalanche versus FET preamps) Then: No radiation damage in depletion layer or pixel preamp FETs No power dissipation of preamps No detector bias current Ultralight detection layer (Si foil+ 1 mm Ar gas) 1 mm gas layer + 20 μm gain gap + CMOS (almost digital!) chip After all: it is a TPC with 1 mm drift length (parallax error!) Max. drift length: 1 mm Max. drift time: 16 ns Resolution: 0.1 mm  1.6 ns

Ageing Power dissipation Material budget Rate effects Radiation hardness Efficiency Position resolution

Ageing Remember the MSGCs…… Little ageing: the ratio (anode surface)/(gas volume) is very high w.r.t. wire chambers little gas gain: 5 k for GOSSIP, 20 – 200 k for wire chambers homogeneous drift field + homogeneous multiplication field versus 1/R field of wire. Absence of high E-field close to a wire: no high electron energy; little production of chemical radicals Confirmed by measurements (Alfonsi, Colas) But: critical issue: ageing studies can not be much accelerated!

Power dissipation For GOSSIP CMOS Pixel chip: Per pixel: - input stage (1.8 μA/pixel) - (timing) logic Futher: data transfer logic guess: 0.1 W/cm 2  Gas Cooling feasible!

Detector Material budget ‘Slimmed’ Si CMOS chip: 30 μm Si Pixel resistive layer1 μm SU8 eq. Anode pads1 μm Al Grid1 μm Al Grid resistive layer5 μm SU8 eq. Cathode1 μm Al

Rate effects time 0Q0Q 20 ns ~10 e- per track (average) gas gain 5 k most ions are discharged at grid after traveling time of 20 ns a few percent enter the drift space: 2 cm from beam pipe: 10 tracks cm ns MHz cm -2 ! Some ions crossing drift space: takes 20 – 200 μs! ion space charge has NO effect on gas gain ion charge may influence drift field, but this does little harm ion charge may influence drift direction: change in lorentz angle ~0.1 rad B-field should help

Efficiency Determined by gas layer thickness and gas mixture: Number of clusters per mm: 3 (Ar) – 10 (Isobutane) Number of electrons per cluster: 3 (Ar) - 15 (Isobutane) Probability to have min. 1 cluster in 1 mm Ar: 0.95 With nice gas: eff ~ 0.99 in 1 mm thick layer should be possible But……. Parallax error due to 1 mm thick layer, with 3 rd coordinate 0.1 mm: TPC/ max drift time 16 ns; σ = 0.1 mm; σ = 1.6 ns: feasible! Lorentz angle We want fast drifting ions (rate effect) little UV photon induced avalanches: good quenching gas

Position resolution Transversal coordinates limited by: Diffusion: single electron diffusion 0 – 40/70 µm weighed fit: ava 20/30 µm 10 e- per track: σ = 8/10 µm pixel dimensions: 20 x 20 – 50 x 50 μm 2 Note: we MUST have sq. pixels: no strips (pad capacity/noise) Good resolution in non-bending plane! Pixel number has NO cost consequence (m 2 Si counts) Pixel number has some effect on CMOS power dissipation δ-rays: can be recognised & eliminated 3 rd (drift) coordinate limited by: Pulse height fluctuation gas gain (5 k), pad capacity, # e- per cluster With Time Over Threshold: σ = 1 ns ~~ 0.1 mm 0Q0Q 20 ns

Radiation hardness Gas is refreshed: no damage CMOS 130 nm technology: TID NIEL SEU: design/test need only modest pixel input stage

Gas instead of Si Pro: - no radiation damage in sensor - modest pixel input circuitry - no bias current, no dark current (in absence of HV breakdowns..!) - requires (almost) only digital CMOS readout chip - low detector material budget - low power dissipation - (12”) CMOS wafer  Wafer Post Processing - no bump bonding - ‘simple’ assembly - operates at room temperature - less sensitive for X-ray background - 3D track info per layer Con: - Gas chamber ageing: not known at this stage - Needs gas flow (but can be used for cooling….)

Plans - InGrid 1 available for tests in November: - rate effects - ageing (start of test: test takes years)  Proof-of-principle of signal generator: Xmas 2004! - InGrid 2: HV breakdowns, beamtests with MediPix (TimePix1 in 2005) - Gossipo: Multi Project Wafer test chip Dummy wafer

New gaseous detectors: the application of pixel sensors as direct anode NIKHEFAuke-Pieter Colijn Alessandro Fornaini Harry van der Graaf Peter Kluit Jan Timmermans Jan Visschers Maximilien Chefdeville Saclay CEA DAPNIAPaul Colas Yannis Giomataris Arnaud Giganon Univ. Twente/Mesa+Jurriaan Schmitz CERN/Medipix ConstmEric Heijne Xavie Llopart Michael Campbell Thanks to: Wim Gotink Joop Rovenkamp Harry van der Graaf NIKHEF, Amsterdam IEEE-NSS Conference, Rome N17-4, Oct 19, 2004