T. Biewer, November 19 th, 2004 46 th APS-DPP 2004, Savannah, Georgia 1 of 18 Edge Ion Heating by Launched High Harmonic Fast Waves in NSTX Supported by.

Slides:



Advertisements
Similar presentations
Berkery – Kinetic Stabilization NSTX Jack Berkery Kinetic Effects on RWM Stabilization in NSTX: Initial Results Supported by Columbia U Comp-X General.
Advertisements

Study of tearing mode stability in the presence of external perturbed fields Experimental validation of MARS-K/Q and RDCON codes Z.R. Wang 1, J.-K. Park.
E D Fredrickson a, J Menard a, D. Stutman b, K. Tritz b a Princeton Plasma Physics Laboratory, NJ b Johns Hopkins University, MD 46 th Annual Meeting of.
NSTX-U T&T TSG Contributions to FY15 JRT NSTX-U Supported by Culham Sci Ctr York U Chubu U Fukui U Hiroshima U Hyogo U Kyoto U Kyushu U Kyushu Tokai U.
E.D. Fredrickson, a W.W. Heidbrink, b C.Z. Cheng, a N.N. Gorelenkov, a E. Belova, a A.W. Hyatt, c G.J. Kramer, a J. Manickam, a J. Menard, a R. Nazikian,
Gary Taylor 1 In collaboration with R. E. Bell 1, P. T. Bonoli 2, D. L. Green 3, R. W. Harvey 4, J. C. Hosea 1, E. F. Jaeger 3, B. P. LeBlanc 1, C. K.
Development and characterization of intermediate- δ discharge with lithium coatings XP-919 Josh Kallman Final XP Review June 5, 2009 NSTX Supported by.
NSTX Status and Plans College W&M Colorado Sch Mines Columbia U Comp-X General Atomics INEL Johns Hopkins U LANL LLNL Lodestar MIT Nova Photonics New York.
NSTX XP830 review – J.W. Berkery J.W. Berkery, S.A. Sabbagh, H. Reimerdes Supported by Columbia U Comp-X General Atomics INEL Johns Hopkins U LANL LLNL.
NSTX SAS – APS DPP ‘05 Supported by Office of Science S.A. Sabbagh 1, A.C. Sontag 1, W. Zhu 1, M.G. Bell 2, R. E. Bell 2, J. Bialek 1, D.A. Gates 2, A.
J. Manickam, C. Kessel and J. Menard Princeton Plasma Physics Laboratory Special thanks to R. Maingi, ORNL and S. Sabbagh, Columbia U. 45 th Annual Meeting.
Initial Exploration of HHFW Current Drive on NSTX J. Hosea, M. Bell, S. Bernabei, S. Kaye, B. LeBlanc, J. Menard, M. Ono C.K. Phillips, A. Rosenberg, J.R.
J.R. Wilson, R.E. Bell, S. Bernabei, T. Biewer, J. C. Hosea, B. LeBlanc, M. Ono, C. K. Phillips Princeton Plasma Physics Laboratory P. Ryan, D.W Swain.
Edge Stability of Small-ELM Regimes in NSTX Aaron Sontag J. Canik, R. Maingi, R. Bell, S. Gerhardt, S. Kubota, B. LeBlanc, J. Manickam, T. Osborne, P.
EP-TSG session Meeting agenda et al. M. Podestà NSTX-U Research Forum 2015 EP-TSG session PPPL, Room B252 02/24/2015 NSTX-U Supported by Culham Sci Ctr.
Current status of high k scattering system J. Kim 1, Y. Ren 2, K-C. Lee 3 and R. Kaita 2 1) POSTECH 2) PPPL 3) UC Davis NSTX Monday Physics Meeting LSB-318,
1 Update on Run Schedule R. Raman NSTX Team Meeting PPPL, Princeton, NJ, 08 February, 2006 Work supported by DOE contract numbers DE-FG02-99ER54519 AM08,
Supported by Office of Science Culham Sci Ctr U St. Andrews York U Chubu U Fukui U Hiroshima U Hyogo U Kyoto U Kyushu U Kyushu Tokai U NIFS Niigata U U.
NSTX Supported by Culham Sci Ctr U St. Andrews York U Chubu U Fukui U Hiroshima U Hyogo U Kyoto U Kyushu U Kyushu Tokai U NIFS Niigata U U Tokyo JAEA Hebrew.
0 NSTX College W&M Colorado Sch Mines Columbia U CompX General Atomics INEL Johns Hopkins U LANL LLNL Lodestar MIT Nova Photonics New York U Old Dominion.
T.M. Biewer, Oct. 20 th, 2003NSTX Physics Meeting1 T. M. Biewer, R.E. Bell October 20 th, 2003 NSTX Physics Meeting Princeton Plasma Physics Laboratory.
Supported by Office of Science Culham Sci Ctr U St. Andrews York U Chubu U Fukui U Hiroshima U Hyogo U Kyoto U Kyushu U Kyushu Tokai U NIFS Niigata U U.
Radiative divertor with impurity seeding in NSTX V. A. Soukhanovskii (LLNL) Acknowledgements: NSTX Team NSTX Results Review Princeton, NJ Wednesday, 1.
NSTX Effects of NTSX Upgrades on DiagnosticsFebruary 8, NSTX Supported by College W&M Colorado Sch Mines Columbia U CompX General Atomics INEL Johns.
Beam Ion Profiles with the SSNPA Diagnostic Columbia U Comp-X General Atomics INEL Johns Hopkins U LANL LLNL Lodestar MIT Nova Photonics NYU ORNL PPPL.
Supported by Columbia U Comp-X General Atomics INEL Johns Hopkins U LANL LLNL Lodestar MIT Nova Photonics NYU ORNL PPPL PSI SNL UC Davis UC Irvine UCLA.
Second Switching Power Amplifier (SPA) Upgrade Physics Considerations Discussion S.A. Sabbagh 1, and the NSTX Research Team 1 Department of Applied Physics,
1 R Raman, B.A. Nelson, D. Mueller 1, T.R. Jarboe, M.G. Bell 1, J. Menard 1, R. Maqueda 2 et al. University of Washington, Seattle 1 Princeton Plasma Physics.
Xp705: Multimode ion transport: TAE avalanches E D Fredrickson, N A Crocker, N N Gorelenkov, W W Heidbrink, S Kubota, F M Levinton, H Yuh, R E Bell NSTX.
NSTX WZ – XP524 - NSTX Results Review ‘05 Supported by Office of Science Columbia U Comp-X General Atomics INEL Johns Hopkins U LANL LLNL Lodestar MIT.
NSTX XP818: ELM mitigation w/midplane coils - SAS S. A. Sabbagh, J-K. Park, T. Evans, S. Gerhardt, R. Maingi, J.E. Menard, many others… (joint ELM mitigation.
Energy Confinement Scaling in the Low Aspect Ratio National Spherical Torus Experiment (NSTX) S. M. Kaye, M.G. Bell, R.E. Bell, E.D. Fredrickson, B.P.
NSTX Team Meeting February 7, 2007 Supported by Office of Science College W&M Colorado Sch Mines Columbia U Comp-X General Atomics INEL Johns Hopkins U.
Supported by Office of Science NSTX H. Yuh (Nova Photonics) and the NSTX Group, PPPL Presented by S. Kaye 4 th T&C ITPA Meeting Culham Lab, UK March.
Development and characterization of intermediate- δ discharge with lithium coatings XP-919 Josh Kallman XP Review - ASC Feb 2, 2009 NSTX Supported by College.
NSTX-U Collaboration Plans for UCLA PI: Neal A. Crocker Co-PI: Prof. Troy Carter Grad. Student (planned 2 nd year onward) PPPL Research Contacts and Collaborators:
1 Columbia U Comp-X General Atomics INEL Johns Hopkins U LANL LLNL Lodestar MIT Nova Photonics NYU ORNL PPPL PSI SNL UC Davis UC Irvine UCLA UCSD U Maryland.
NSTX S. A. Sabbagh 1, J. Bialek 1, A. Sontag 1, W. Zhu 1, B. LeBlanc 2, R. E. Bell 2, A. H. Glasser 3, L. L. Lao 4, J.E. Menard 2, M. Bell 2, T. Biewer.
NSTX Team Meeting December 21, 2009 College W&M Colorado Sch Mines Columbia U Comp-X General Atomics INEL Johns Hopkins U LANL LLNL Lodestar MIT Nova Photonics.
NSTX XP1031: MHD/ELM stability vs. thermoelectric J, edge J, and collisionality -NSTX Physics Mtg. 6/28/10 - S.A. Sabbagh, et al. S.A. Sabbagh 1, T.E.
Enhancement of edge stability with lithium wall coatings in NSTX Rajesh Maingi, Oak Ridge National Lab R.E. Bell, B.P. LeBlanc, R. Kaita, H.W. Kugel, J.
Effect of 3-D fields on edge power/particle fluxes between and during ELMs (XP1026) A. Loarte, J-W. Ahn, J. M. Canik, R. Maingi, and J.-K. Park and the.
NSTX-Upgrade Magnetics And Related Diagnostics SPG NSTX Supported by Culham Sci Ctr U St. Andrews York U Chubu U Fukui U Hiroshima U Hyogo U Kyoto U Kyushu.
First results of fast IR camera diagnostic J-W. Ahn and R. Maingi ORNL NSTX Monday Physics Meeting LSB-318, PPPL June 22, 2009 NSTX Supported by College.
Supported by Columbia U Comp-X General Atomics INEL Johns Hopkins U LANL LLNL Lodestar MIT Nova Photonics NYU ORNL PPPL PSI SNL UC Davis UC Irvine UCLA.
NSTX Sabbagh/Shaing S. A. Sabbagh 1, K.C. Shaing 2, et al. XP743: Island-induced neoclassical toroidal viscosity and dependence on i Supported by Columbia.
Supported by Columbia U Comp-X General Atomics INEL Johns Hopkins U LANL LLNL Lodestar MIT Nova Photonics NYU ORNL PPPL PSI SNL UC Davis UC Irvine UCLA.
1 Columbia U Comp-X General Atomics INEL Johns Hopkins U LANL LLNL Lodestar MIT Nova Photonics NYU ORNL PPPL PSI SNL UC Davis UC Irvine UCLA UCSD U Maryland.
Supported by Office of Science NSTX S.M. Kaye, PPPL ITPA PPPL 5-7 Oct Confinement and Transport in NSTX: Lithiumized vs non-Lithiumized Plasmas Culham.
SMK – IAEA ‘041 Stanley M. Kaye for the NSTX Research Team PPPL, Princeton University, U.S.A. 20 th IAEA Fusion Energy Conference Vilamoura, Portugal November.
T. Biewer, March 3 rd, 2003NSTX Physics Meeting Measurements of Edge Impurity Ion Dynamics During RF Heating T. M. Biewer, R.E. Bell March 3 rd, 2003 NSTX.
Planning for Toroidal Lithium Divertor Target for NSTX and Supporting Experiments on CDX-U/LTX R. Kaita Boundary Physics Science Focus Group Meeting July.
NSTX 2007 MHD XP Review – J. Menard 1 Optimization of RFA detection algorithms during dynamic error field correction Presented by: J.E. Menard, PPPL Final.
Presently Planned Vacuum-Side Diagnostics for the NSTX-Upgrade Center Column NSTX Supported by Culham Sci Ctr U St. Andrews York U Chubu U Fukui U Hiroshima.
1 Electron Bernstein Wave Physics on NSTX - Taylor Electron Bernstein Wave Physics on NSTX G. Taylor, J.B. Caughman, M.D. Carter, S. Diem, P.C. Efthimion,
Stanley M. Kaye PPPL, Princeton University R. Bell, C. Bourdelle, B. LeBlanc, S. Paul, M. Redi, S. Sabbagh, D. Stutman APS-DPP Meeting Albuquerque, N.M.
NSTX Electron Bernstein Wave Research - Taylor 1 of 8 Supported by Columbia U Comp-X General Atomics INEL Johns Hopkins U LANL LLNL Lodestar MIT Nova Photonics.
Preliminary Results from XP1020 RFA Measurements J.W. Berkery Department of Applied Physics, Columbia University, New York, NY, USA NSTX Monday Physics.
Raman, Dec051 Solenoid-free Plasma Start-up in NSTX using Transient CHI R. Raman 1, T.R. Jarboe 1, B.A. Nelson 1, M.G. Bell 2, D.Mueller 2, R. Maqueda.
V. A. Soukhanovskii, XP1002 Review, 9 June 2010, Princeton, NJ 1 of 9 XP 1002: Core impurity density and P rad reduction using divertor condition modifications.
Implementation of a 3D halo neutral model in the TRANSP code and application to projected NSTX-U plasmas S. S. Medley 1, D. Liu 2, M. V. Gorelenkova 1,
Advanced Scenario Development on NSTX D. A. Gates, PPPL For the NSTX Research Team 50th APS-DPP meeting Dallas, TX November 17, 2008 College W&M Colorado.
NSTX-U Collaboration Status and Plans for: M.I.T. Plasma Science and Fusion Center Abhay K. Ram, Paul Bonoli, and John Wright NSTX-U Collaborator Research.
1 Roger Raman for the NSTX Research Team University of Washington, Seattle Update on the NSTX Run Plan PPPL, Princeton, NJ, 15 May, 2006 Supported by Office.
Monitoring impact of the LLD Adam McLean, ORNL T. Gray, R. Maingi Lithium, TSG group preliminary research forum PPPL, B252 Nov. 23, 2009 NSTX Supported.
Comments on HC Measurements for NSTX- Upgrade SPG CS Upgrade Meeting 11/2/11 NSTX Supported by Culham Sci Ctr U St. Andrews York U Chubu U Fukui U Hiroshima.
Correlation between Electron Transport and Shear Alfven Activity in NSTX College W&M Colorado Sch Mines Columbia U Comp-X General Atomics INEL Johns Hopkins.
NSTX XP1062 (NTV) team review: 9/16/10 - S.A. Sabbagh, et al. S.A. Sabbagh, R.E. Bell, J.W. Berkery, S.P. Gerhardt, J-K Park, et al. XP1062: NTV behavior.
T. Biewer, Sep. 20 th, 2004 NSTX Results Review of 11 Edge Ion Heating by Launched HHFW in NSTX T.M. Biewer, R.E. Bell, S. Diem, P.M. Ryan, J.R.
High Harmonic Fast Wave Deposition and Heating Results in NSTX*
Presentation transcript:

T. Biewer, November 19 th, th APS-DPP 2004, Savannah, Georgia 1 of 18 Edge Ion Heating by Launched High Harmonic Fast Waves in NSTX Supported by Columbia U Comp-X General Atomics INEL Johns Hopkins U LANL LLNL Lodestar MIT Nova Photonics NYU ORNL PPPL PSI SNL UC Davis UC Irvine UCLA UCSD U Maryland U New Mexico U Rochester U Washington U Wisconsin Culham Sci Ctr Hiroshima U HIST Kyushu Tokai U Niigata U Tsukuba U U Tokyo Ioffe Inst TRINITI KBSI KAIST ENEA, Frascati CEA, Cadarache IPP, Jülich IPP, Garching U Quebec T. M. Biewer, R. E. Bell, S. J. Diem, C. K. Phillips, and J. R. Wilson Princeton Plasma Physics Laboratory P.M. Ryan Oak Ridge National Laboratory and the NSTX Team 46 th American Physical Society Division of Plasma Physics Meeting Savannah, Georgia, 2004

T. Biewer, November 19 th, th APS-DPP 2004, Savannah, Georgia 2 of 18 HHFW expected to heat core e -, but ions unaffected. NSTX uses High Harmonic Fast Waves (HHFW) –>10 th harmonic of  ci PICES (linear code) simulations of the interaction of the HHFW with NSTX plasmas indicates: –Strong e - absorption –Weak ion absorption M. Ono, Phys. Plasmas 2, 4075 (1995). R. Majeski, et al., in Radio Frequency Power in Plasmas-13 th Topical Conference, (AIP Press, New York, 1999) p. 296.

T. Biewer, November 19 th, th APS-DPP 2004, Savannah, Georgia 3 of 18 Introduction/Outline New diagnostic capabilities on NSTX Observations during RF heating –Unexpected ion heating at edge –Anisotropic ion temperatures RF heating mechanism –Parametric decay of HHFW into IBW –Power flow into ions Summary

T. Biewer, November 19 th, th APS-DPP 2004, Savannah, Georgia 4 of 18 Simultaneous toroidal and poloidal views of the edge plasma. New Edge Rotation Diagnostic (ERD) measures flow and T i in the edge of NSTX. Poloidal View Toroidal View RF antenna occupies 25% of midplane. Langmuir probe Covers last ~20 cm of plasma edge.

T. Biewer, November 19 th, th APS-DPP 2004, Savannah, Georgia 5 of 18 Sample spectrum shows the performance of the ERD. High throughput spectrometer gives strong S/N. Spectral resolution of 0.22 Å/pixel with 75  m slits. 10 ms time resolution limited by CCD readout, not light levels. C IV He II Ohmic, Helium Plasma C III triplet T.M. Biewer, R.E. Bell, et al., Rev. Sci. Instrum. 75, 650 (2004).

T. Biewer, November 19 th, th APS-DPP 2004, Savannah, Georgia 6 of 18 A hot ion component develops unexpectedly during RF. ERD has simultaneous poloidal and toroidal views of the edge. Without RF, the spectra are well characterized by single Gaussian. When RF is applied (30 MHz HHFW), the spectra are distorted: poloidal v. toroidal anisotropy no longer fit by a single Gaussian He II PoloidalToroidal Shot R tan ~146 cm

T. Biewer, November 19 th, th APS-DPP 2004, Savannah, Georgia 7 of 18 The hot component is a transient state observed by the ERD. Hot component is ~10  hotter than the cold component. –Thermalization: ~10 ms –Ionization: ~100  sTransient state excited by RF –Emission: ~1 ns Poloidal v. toroidal asymmetry in hot component temperatures. Large poloidal increase in velocity for hot component. Shot He II

T. Biewer, November 19 th, th APS-DPP 2004, Savannah, Georgia 8 of 18 Impurity (carbon) and bulk (helium) edge ion species are heated by RF. C III PoloidalToroidal Shot Edge ion heating observed in C III Useful esp. during D 2 fueled discharges Brightness increases dramatically Can fit triplet –Improves total signal level –Robust against other lines

T. Biewer, November 19 th, th APS-DPP 2004, Savannah, Georgia 9 of 18 RF heats core e - and edge ions: T i >>T e in edge. Core e - are heated by the RF. Edge ions are hotter than edge e - during RF: –CHERS C 6+ C 5+ –ERD C 2+ He + RF onRF off He discharge, shot C 6+ TeTe pol He + tor He + C 6+ TeTe

T. Biewer, November 19 th, th APS-DPP 2004, Savannah, Georgia 10 of 18 Complex time dynamics are observed with RF. Poloidal He II data Poloidal C III data Core T e and edge T i heating T i and v reach equilibrium Edge poloidal rotation increases Edge emission increases

T. Biewer, November 19 th, th APS-DPP 2004, Savannah, Georgia 11 of 18 Edge ion temperature increases with RF power. Hot component (  ) T i increases as P RF Cold component (o) T i unaffected by P RF. Negative poloidal velocity is upwards on the outboard midplane. Negative toroidal velocity is opposite to the direction of I p. BPBP BTBT IPIP vPvP vTvT NBI + directions Poloidal velocity direction increase consistent with scrape off loss of energetic ions. Poloidal vs. Toroidal anisotropy He II

T. Biewer, November 19 th, th APS-DPP 2004, Savannah, Georgia 12 of 18 T parl (eV) T perp (eV) Hot edge ion temperatures are anisotropic: T perp >> T parl. EFIT calculates magnetic field pitch at the edge: –from simultaneous poloidal and toroidal measurements –get the perpendicular and parallel temperatures Hot edge ions have large perpendicular energy content. poloidal toroidal RF Power perpendicular parallel Hot helium data edge T i (eV) P RF (MW)

T. Biewer, November 19 th, th APS-DPP 2004, Savannah, Georgia 13 of 18 Codes predict HHFW heat core e -, but edge ions unaffected. TORIC (linear code) simulations of the interaction of the HHFW with NSTX plasmas indicates: –Strong e - absorption –Weak ion absorption C.K. Phillips, Poster JP1.013 at this meeting. electron absorption helium absorption

T. Biewer, November 19 th, th APS-DPP 2004, Savannah, Georgia 14 of 18 Parametric decay instability candidate for edge ion heating. The PDI results from nonlinear 3-wave coupling mechanisms. –M. Porkolab, Eng. Fusion and Design 12, 93 (1990). The launched HHFW decays into an Ion Bernstein Wave (IBW) and a quasi-mode at the ion cyclotron (ICQM) frequency. The IBW heats the perpendicular distribution of ions at the ICQM resonance (edge of the plasma). Because multiple ion species and charge states are present, multiple ICQM’s are available, and each ion can be heated. –Majority of power goes into most abundant edge ion (helium).    z HHFW    28 MHz IBW    MHz Helium ICQM

T. Biewer, November 19 th, th APS-DPP 2004, Savannah, Georgia 15 of 18 Langmuir probe measurements confirm presence of IBW’s. 30 MHz launched HHFW (attenuated by 40 dB notch filter) A portion of the HHFW undergoes nonlinear parametric decay into a daughter IBW and an ICQM, which both damp in the outer 10 cm of plasma. IBW’s observed as lower sidebands of the HHFW. expected frequencies for the first 3 harmonics of the ICQM. Ohmic shot (no RF), shot MHz heterodyne pick-up. D 2 plasma with 1 MW HHFW, shot Probe is located 2.5 cm behind the antenna limiter.  ci S.J. Diem, Poster JP1.014 at this meeting. Intensity (dB) Frequency (MHz)

T. Biewer, November 19 th, th APS-DPP 2004, Savannah, Georgia 16 of 18 ~20% of launched power goes into edge ions. No measure of direct ion heating power from wave. Collisional power estimate assumes power needed to raise T i above T e Linear fit through origin suggests ion absorption: –14 m -1 : 18% of HHFW power –7 m -1 : 22% of HHFW power Lower bound, since other heat loss channels not considered. 7 m m -1 S.J. Diem, Poster JP1.014 at this meeting. Helium plasmas with HHFW

T. Biewer, November 19 th, th APS-DPP 2004, Savannah, Georgia 17 of 18 Additional power may go into enhanced ion tail energies. Parametric decay of fast waves into IBW’s leads to enhanced ion energies in the high energy tail of many RF heated plasmas. –NSTX: A.L. Rosenberg, et al., Phys. Plasmas 11, 2441 (2004). –Alcator C-MOD: J.C. Rost, et al., Phys. Plasmas 9, 1262 (2002). –ASDEX: R.V. Nieuwenhove, et al., Nuclear Fusion 28, 1603 (1988). –TEXTOR: G. Van Oost, et al., Eng. Fusion and Design 12, 149 (1990). –JT-60: T. Fujii, et al., Eng. Fusion and Design 12, 139 (1990). None of these machines (other than NSTX) observed edge thermal ion heating: lack of appropriate diagnostic. Thermal ion heating and enhanced ion tail energies are parasitic losses of power. –Should be considered in the energy budget of the plasma.

T. Biewer, November 19 th, th APS-DPP 2004, Savannah, Georgia 18 of 18 Summary Results from new Edge Rotation Diagnostic Edge ion heating observed during RF: –All ion species and charge states (He +, C 2+, C 5+, C 6+ ) –Hot perpendicular temperature anisotropy Observed in many NSTX plasma discharges, whenever HHFW power is applied. Launched HHFW undergoes parametric decay into an ICQM and an IBW in outer ~10 cm of plasma. –HHFW propagates to heat core e - –IBW heats edge ions (~20% parasitic loss of power)

T. Biewer, November 19 th, th APS-DPP 2004, Savannah, Georgia 19 of 18 RF edge ion heating observed under many plasma conditions. 14 m -1 7 m m -1 Heating Counter-CD Co-CD D 2 He DND USN LSN Antenna Phasing (k ll ) Antenna Phasing Bulk Gas SpeciesMagnetic Configuration single Gaussian, poloidal C III data