1 Heavy quark system in vacuum and in medium Su Houng Lee In collaboration with Kenji Morita Also, thanks to group members: Present: T. Song, K.I. Kim, W.S. Park, H. Park, K. Jeong Former: K. Ohnishi, S. Yasui, Y. Song
S H Lee 2 Hadronic Physics at B-factory, LEPS and J-PARC B-factory Heavy quark physics Heavy Exotics LEPS: Chiral, Exotics J-PARC D, anti-p, nuclear matter Heavy Exotics qq, Qq in nuclear matter Chiral symmetry breaking QQ in nuclear matter confinement
S H Lee 3 Some perspectives on sQGP and relation to deconfinement K.Morita, SHL: PRL 100, (08) K.Morita, SHL: PRC 77, (08) SHL, K. Morita: PRD 79, (09) Y.Song, SHL, K.Morita: PRC 79, (09)
S H Lee 4 QCD Phase transition: Lattice data on (, p) Rescaled pressure (Karsch 01) Karsch hep-lat/ Lattice result for purge gauge (Boyd et al 96) p/T 4 /T 4 Sudden increase in Slow increase in p Latest Lattice result (Bazavov et al 09) sQGP
S H Lee 5 Two gluon operators (quenched case): M 2 M 0 Operators Thermodynamics Energy momentum Tensor Twist-2 GluonGluon condensate sQGP
S H Lee 6 EOS in terms of M 0 M 2 Bag model EOS in QGP phase Dominated by non perturbative change at Tc : SHL, PRD40,2484 (89) Effects of dynamical quarks on M 0 M 0, M 2 and Bag model EOS
S H Lee 7 Relation to Electric and Magnetic condensate Relation to deconfinement T T =0 W(S-T) W(S-S) Time Space L L OPE 1- (ST) 2 +… OPE 1- (SS) 2 +… exp(- V(T)) Using s from Kaczmarek et al (prd04) Deconfinement involves both perturbative (M 2 ) and Non perturbative (M 0 ) change M 0, M 2 E 2, B 2 confinement
S H Lee 8 Linear density approximation Condensate at finite density At = 5 x n.m. M 0, M 2 in nuclear matter
S H Lee 9 QCD vacuum Nuclear medium: 20% deconfinement
S H Lee 10 Approaches to Heavy quark system in medium OPE, QCD Stark Effect, and QCD sum rules
S H Lee 11 Heavy quark correlation function (q 2 ) OPE makes sense when Definition Operator product expansion (OPE) Even in medium as long as
S H Lee 12 q 2 =0 : photo production of open charm q 2 =m 2 J/ : OPE for bound state (Peskin 79) -q 2 >0 : QCD sum rules for heavy quarks 2 nd order Stark Effect NLO width ( Song, Lee 05) Applicable cases
S H Lee 13 OPE for bound state: m infinity QCD 2 nd order Stark Effect : > qcd Attractive for ground state
S H Lee 14 2 nd order Stark effect from pNRQCD LO Singlet potential from pNRQCD : Brambilla et al. Derivation 1/r > Binding > QCD, Take expectation value Large Nc limit Static condensate Energy
S H Lee 15 q 2 =0 : photo production of open charm q 2 =m 2 J/ : OPE for bound state (Peskin 79) -q 2 >0 : QCD sum rules for heavy quarks Constraint on ( m, Applicable cases
S H Lee 16 Q 2 =-q 2 >0, QCD sum rules for Heavy quark system OPE Phenomenological side s J/ ’’ sum rule at T=0 : can take any Q 2 >=0,
S H Lee 17 Matching M n-1 /M n from Phen to OPE Obtain constraint for m J/ and OPEPhenomenological side s J/ ’’ +c <G2><G2> <G2><G2> sum rule in medium
S H Lee 18 QCD sum rule constraint Mass and width of J/ in nuclear Matter (Morita, Lee 08)
S H Lee 19 Quantum numbers QCD 2 nd Stark eff. Potential model QCD sum rules Effects of DD loop c 0 -+ –8 MeV–5 MeV (Klingl, SHL,Weise, Morita) No effect J/ 1 -- –8 MeV (Peskin, Luke) -10 MeV (Brodsky et al). –7 MeV (Klingl, SHL,Weise, Morita) <2 MeV (SHL, Ko) c c 0,1, MeV-15 MeV (Morita, Lee) No effect on c1 (3686) MeV< 30 MeV (3770) MeV< 30 MeV Other approaches for mass shift in nuclear matter
S H Lee 20 Anti proton Heavy nuclei Observation of m through p-A reaction Expected luminosity at GSI 2x cm -2 s -1 Can be done at J-PARC
S H Lee 21 Some perspectives on Diquarks and heavy exotics F.Navara, M. Nielsen, SHL: PLB 649, 166 (07) SHL, S.Yasui, W.Liu, CMKo: EPJC 54, 259 (08) SHL, M. Nielsen et al: PLB 661, 28 (08) SHL, K.Morita, M.Nielsen: PRD 78, (08), NPA 815,29 (09) SHL, M.Nielsen, U. Wiedner: JKPS 55,424(09) SHL, S. Yasui: EPJC (09) in press
S H Lee 22 J PC Special feature QSR tetraquark QSR molecule Others X(3872) 1 ++ B(X J)/B( X )=1 [AV][S] m=3.92 (Nielsen..) DD* m=3.87 (Nielsen,..) QSR with (Morita), Mixture with cc Y 1 –- ISR Belle 4260,4360,4660 BaBar 4260,4360 [V][S] q=s m=4.65 q=u,d m=4.49 (Nielsen, et al) Ds0Ds* m=4.42 D0D* m=4.27 DD1 m=4.19 (Nielsen et al ) Hybrid Z +(4430) ?,0 - ’ [PS][S] m=4.52 (Nielsen, et al) D*D1 m=4.40 (Nielsen, Lee et al ) Z+(4050,4250) ? D*D* m=4.15 DD1=4.19 (Nielsen, et al ) D*D*(4020) D1D(4285) threshold effect Newly observed states
S H Lee 23 QCD sum rule results on X(3872), Z(4430) In principle QCD can not distinguish between diquark configuration and molecular configuration However, seems to favor molecular current for all states
S H Lee 24 Tetraquarks: Jaffe color spin interaction: light scalar nonet q3q3 q1q1 q2q2 q4q4 diquark picture: Yasui, Lee,.. (EJP08,EJP09) Heavy Dibaryon Hc: (ud) (us) (uc) stable against (ud) u + (us) c Heavy Tetraquark with spin 0 or spin 1
S H Lee 25 color spin interaction: light scalar nonet q3q3 q1q1 q2q2 q4q4 Two heavy anti-quarks: explicitly exotic Heavy and explicitly exotic tetraquarks
S H Lee 26 Belle: PRL 98, (07) e+ e- J/ + X(3904) D D* T cc (3800) e+ e c c SHL, S Yasui, W Liu, C Ko (08) Can look for 1 + (Tcc) Previous works on Tcc Z. Zouzou, B. Silverstre-Brac, C. Gilgnooux, J Richard (86), D. Janc, M. Rosina (04), Y. Cui, S. L. Zhu (07) QCD sum rules: F Navarra, M.Nielsen, SHLee, PLB 649, 166 (2007) simple diquark: SHL, S. Yasui, W.Liu, C Ko EPJ C54, 259 (2008), SHL, S. Yasui: EPJ C (09) in press c c
S H Lee 27 1.QCD phase transition is characterized by Perturbative M2 and Non perturbative M0 change 20% effect at Nuclear matter 3.More work on X,Y, Z are needed. 2.Heavy quark system can probe these changes and study confinement physics FAIR, J-PARC Summary 4.Explicitly Exotic heavy particles: Hc, Tcc, … FAIR, J-PARC D, anti-proton etc..