BIA 2610 – Statistical Methods

Slides:



Advertisements
Similar presentations
Copyright © 2010, 2007, 2004 Pearson Education, Inc. Chapter 14 From Randomness to Probability.
Advertisements

Introduction to Probability Experiments, Outcomes, Events and Sample Spaces What is probability? Basic Rules of Probability Probabilities of Compound Events.
Chapter 4 Probability and Probability Distributions
© 2011 Pearson Education, Inc
Introduction to Probability Experiments Counting Rules Combinations Permutations Assigning Probabilities.
Introduction to Probability
Chapter 4 Introduction to Probability n Experiments, Counting Rules, and Assigning Probabilities and Assigning Probabilities n Events and Their Probability.
Chapter 4 Introduction to Probability
Chapter 4 Introduction to Probability
1 1 Slide © 2009 Thomson South-Western. All Rights Reserved Slides by JOHN LOUCKS St. Edward’s University.
Business and Finance College Principles of Statistics Eng. Heba Hamad
Introduction to probability BSAD 30 Dave Novak Source: Anderson et al., 2013 Quantitative Methods for Business 12 th edition – some slides are directly.
Introduction to Probability Uncertainty, Probability, Tree Diagrams, Combinations and Permutations Chapter 4 BA 201.
Sherlock Holmes once observed that men are insoluble puzzles except in the aggregate, where they become mathematical certainties.
Chapter 4 Introduction to Probability Experiments, Counting Rules, and Assigning Probabilities Events and Their Probability Some Basic Relationships of.
1 1 Slide 2009 University of Minnesota-Duluth, Econ-2030 (Dr. Tadesse) Chapter 4 __________________________ Introduction to Probability.
1 1 Slide © 2012 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole.
Chapter 4 Probability.
Chapter 4 Probability Copyright © 2014 by The McGraw-Hill Companies, Inc. All rights reserved.McGraw-Hill/Irwin.
Basic Concepts and Approaches
© 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part, except for use as permitted in a license.
1 1 Slide © 2008 Thomson South-Western. All Rights Reserved Slides by JOHN LOUCKS St. Edward’s University.
Chapter 4 Probability See.
Introduction to Probability n Experiments and the Sample Space n Assigning Probabilities to Experimental Outcomes Experimental Outcomes n Events and Their.
1 1 Slide STATISTICS FOR BUSINESS AND ECONOMICS Seventh Edition AndersonSweeneyWilliams Slides Prepared by John Loucks © 1999 ITP/South-Western College.
Copyright © 2010 by The McGraw-Hill Companies, Inc. All rights reserved. McGraw-Hill/Irwin Chapter 4 Probability.
1 1 Slide © 2003 South-Western/Thomson Learning TM Slides Prepared by JOHN S. LOUCKS St. Edward’s University.
Econ 3790: Business and Economics Statistics Instructor: Yogesh Uppal
1 1 Slide © 2001 South-Western/Thomson Learning  Anderson  Sweeney  Williams Anderson  Sweeney  Williams  Slides Prepared by JOHN LOUCKS  CONTEMPORARYBUSINESSSTATISTICS.
Business and Finance College Principles of Statistics Eng
Introduction to Probability  Probability is a numerical measure of the likelihood that an event will occur.  Probability values are always assigned on.
1 1 Slide © 2016 Cengage Learning. All Rights Reserved. Probability is a numerical measure of the likelihood Probability is a numerical measure of the.
1 Slide Slide Probability is conditional. Theorems of increase of probabilities. Theorems of addition of probabilities.
Probability. Basic Concepts of Probability and Counting.
1 1 Slide © 2004 Thomson/South-Western Slides Prepared by JOHN S. LOUCKS St. Edward’s University Slides Prepared by JOHN S. LOUCKS St. Edward’s University.
Basic Concepts of Probability Coach Bridges NOTES.
Chapter 4 Probability ©. Sample Space sample space.S The possible outcomes of a random experiment are called the basic outcomes, and the set of all basic.
Introduction to Probability
1 1 Slide © 2003 Thomson/South-Western. 2 2 Slide © 2003 Thomson/South-Western Chapter 4 Introduction to Probability n Experiments, Counting Rules, and.
1 Chapter 4 – Probability An Introduction. 2 Chapter Outline – Part 1  Experiments, Counting Rules, and Assigning Probabilities  Events and Their Probability.
From Randomness to Probability Chapter 14. Dealing with Random Phenomena A random phenomenon is a situation in which we know what outcomes could happen,
1 1 Slide © 2004 Thomson/South-Western Assigning Probabilities Classical Method Relative Frequency Method Subjective Method Assigning probabilities based.
1 1 Slide Slides Prepared by JOHN S. LOUCKS St. Edward’s University © 2002 South-Western /Thomson Learning.
1 1 Slide © 2007 Thomson South-Western. All Rights Reserved Chapter 4 Introduction to Probability Experiments, Counting Rules, and Assigning Probabilities.
Introduction to Probability 1. What is the “chance” that sales will decrease if the price of the product is increase? 2. How likely that the Thai GDP will.
1 1 Slide Introduction to Probability Assigning Probabilities and Probability Relationships Chapter 4 BA 201.
Copyright © 2014 by McGraw-Hill Higher Education. All rights reserved. Essentials of Business Statistics: Communicating with Numbers By Sanjiv Jaggia and.
1 1 Slide IS 310 – Business Statistics IS 310 Business Statistics CSU Long Beach.
+ Chapter 5 Overview 5.1 Introducing Probability 5.2 Combining Events 5.3 Conditional Probability 5.4 Counting Methods 1.
Probability Chapter 3. § 3.1 Basic Concepts of Probability.
4-3 Addition Rule This section presents the addition rule as a device for finding probabilities that can be expressed as P(A or B), the probability that.
Chapter 4 Probability Concepts Events and Probability Three Helpful Concepts in Understanding Probability: Experiment Sample Space Event Experiment.
1 Probability- Basic Concepts and Approaches Dr. Jerrell T. Stracener, SAE Fellow Leadership in Engineering EMIS 7370/5370 STAT 5340 : PROBABILITY AND.
Econ 3790: Business and Economics Statistics Instructor: Yogesh Uppal
Lecture 2 Probability By Aziza Munir. Summary of last lecture Why QBA What is a model? Why to develop a model Types of models Flow chart of transformation.
Copyright © 2011 by The McGraw-Hill Companies, Inc. All rights reserved. McGraw-Hill/Irwin Chapter 4 Probability.
Sets and Probability Chapter 7. Ch. 7 Sets and Probabilities 4-2 Basic Concepts of Probability 4-3 Addition Rule 4-4 Multiplication Rule 4-5 Multiplication.
1 1 Slide HJ copyrights Chapter 4 Introduction to Probability n Experiments, Counting Rules, and Assigning Probabilities Assigning Probabilities n Events.
AP Statistics From Randomness to Probability Chapter 14.
Introduction To Probability
Chapter 4 - Introduction to Probability
Chapter 3 Probability.
Chapter 4 Probability Concepts
Introduction to Probability
Statistics for Business and Economics
CHAPTER 4 (Part A) PROBABILITY
St. Edward’s University
St. Edward’s University
Presentation transcript:

BIA 2610 – Statistical Methods Chapter 4 – Introduction to Probability

Chapter 4 Introduction to Probability Experiments, Counting Rules, and Assigning Probabilities Events and Their Probability Some Basic Relationships of Probability Conditional Probability

Probability Probability is a numerical measure of the likelihood that an event will occur. Probability values are always assigned on a scale from 0 to 1. A probability near zero indicates an event is quite unlikely to occur. A probability near one indicates an event is almost certain to occur.

Probability as a Numerical Measure of the Likelihood of Occurrence Increasing Likelihood of Occurrence .5 1 Probability: The event is very unlikely to occur. The occurrence of the event is just as likely as it is unlikely. The event is almost certain to occur.

An Experiment and Its Sample Space An experiment is any process that generates well- defined outcomes. The sample space for an experiment is the set of all experimental outcomes. An experimental outcome is also called a sample point.

An Experiment and Its Sample Space Toss a coin Inspection a part Conduct a sales call Roll a die Play a football game Experiment Outcomes Head, tail Defective, non-defective Purchase, no purchase 1, 2, 3, 4, 5, 6 Win, lose, tie

Assigning Probabilities Basic Requirements for Assigning Probabilities 1. The probability assigned to each experimental outcome must be between 0 and 1, inclusively. 0 < P(Ei) < 1 for all i where: Ei is the i th experimental outcome and P(Ei) is its probability

Assigning Probabilities Basic Requirements for Assigning Probabilities 2. The sum of the probabilities for all experimental outcomes must equal 1. P(E1) + P(E2) + . . . + P(En) = 1 where: n is the number of experimental outcomes

Assigning Probabilities Classical Method Assigning probabilities based on the assumption of equally likely outcomes Relative Frequency Method Assigning probabilities based on experimentation or historical data Subjective Method Assigning probabilities based on judgment

Classical Method Example: Rolling a Die If an experiment has n possible outcomes, the classical method would assign a probability of 1/n to each outcome. Experiment: Rolling a die Sample Space: S = {1, 2, 3, 4, 5, 6} Probabilities: Each sample point has a 1/6 chance of occurring

Relative Frequency Method Example: Lucas Tool Rental Lucas Tool Rental would like to assign probabilities to the number of car polishers it rents each day. Office records show the following frequencies of daily rentals for the last 40 days. Number of Polishers Rented Number of Days 1 2 3 4 4 6 18 10 2

Relative Frequency Method Example: Lucas Tool Rental Each probability assignment is given by dividing the frequency (number of days) by the total frequency (total number of days). Number of Polishers Rented Number of Days Probability 1 2 3 4 4 6 18 10 2 40 .10 .15 .45 .25 .05 1.00 4/40

Subjective Method When economic conditions or a company’s circumstances change rapidly it might be inappropriate to assign probabilities based solely on historical data. We can use any data available as well as our experience and intuition, but ultimately a probability value should express our degree of belief that the experimental outcome will occur. The best probability estimates often are obtained by combining the estimates from the classical or relative frequency approach with the subjective estimate.

Events and Their Probabilities An event is a collection of sample points. The probability of any event is equal to the sum of the probabilities of the sample points in the event. If we can identify all the sample points of an experiment and assign a probability to each, we can compute the probability of an event.

Some Basic Relationships of Probability There are some basic probability relationships that can be used to compute the probability of an event without knowledge of all the sample point probabilities. Complement of an Event Union of Two Events Intersection of Two Events Mutually Exclusive Events

Complement of an Event Venn Diagram The complement of event A is defined to be the event consisting of all sample points that are not in A. The complement of A is denoted by Ac. Sample Space S Event A Ac Venn Diagram

Union of Two Events The union of events A and B is the event containing all sample points that are in A or B or both. The union of events A and B is denoted by A  B. Sample Space S Event A Event B

Intersection of Two Events The intersection of events A and B is the set of all sample points that are in both A and B. The intersection of events A and B is denoted by A B. Sample Space S Event A Event B Intersection of A and B

Addition Law The addition law provides a way to compute the probability of event A, or B, or both A and B occurring. The law is written as: P(A B) = P(A) + P(B) - P(A  B)

Mutually Exclusive Events Two events are said to be mutually exclusive if the events have no sample points in common. Two events are mutually exclusive if, when one event occurs, the other cannot occur. Sample Space S Event A Event B

Mutually Exclusive Events If events A and B are mutually exclusive, P(A  B) = 0. The addition law for mutually exclusive events is: P(A B) = P(A) + P(B) There is no need to include “- P(A  B)”

Conditional Probability The probability of an event given that another event has occurred is called a conditional probability. The conditional probability of A given B is denoted by P(A|B). A conditional probability is computed as follows : 𝑃 𝐴 𝐵 = 𝑃(𝐴∩𝐵) 𝑃(𝐵)

Multiplication Law The multiplication law provides a way to compute the probability of the intersection of two events. The law may be written as: or P(A B) = P(B)P(A|B) P(A B) = P(A|B)P(B)

Contingency Table Example

End of Chapter 4