L 3 - Stellar Evolution I: November-December, 20061 L 3: Collapse phase – theoretical models Background image: courtesy ESO - B68 with.

Slides:



Advertisements
Similar presentations
Cosmological Structure Formation A Short Course III. Structure Formation in the Non-Linear Regime Chris Power.
Advertisements

From protostellar cores to disk galaxies - Zurich - 09/2007 S.Walch, A.Burkert, T.Naab Munich University Observatory S.Walch, A.Burkert, T.Naab Munich.
Estimate of physical parameters of molecular clouds Observables: T MB (or F ν ), ν, Ω S Unknowns: V, T K, N X, M H 2, n H 2 –V velocity field –T K kinetic.
The Standard Solar Model and Its Evolution Marc Pinsonneault Ohio State University Collaborators: Larry Capuder Scott Gaudi.
MHD Simulation of An Isothermal Sphere © 2002, Summer Student Program, Institute of Astronomy and Astrophysics, Academia Sinica MHD Simulation of An Isothermal.
Prof. Hayashi’s Work on the Pre-Main-Sequence Evolution and Brown Dwarfs Takenori NAKANO (Kyoto) First Star IV May 21, 2012, KyotoMay 21.
Numerical Relativity & Gravitational waves I.Introduction II.Status III.Latest results IV.Summary M. Shibata (U. Tokyo)
How do stars get their masses? and A short look ahead Phil Myers CfA Dense Core LXV Newport, RI October 23, 2009.
Planet Formation Topic: Collapsing clouds and the formation of disks Lecture by: C.P. Dullemond.
From Pre-stellar Cores to Proto-stars: The Initial Conditions of Star Formation PHILIPPE ANDRE DEREK WARD-THOMPSON MARY BARSONY Reported by Fang Xiong,
Non-ideal MHD and the Formation of Disks Shantanu Basu Western University, London, Ontario, Canada Wolf Dapp ( Juelich Supercomputing Centre, Germany ),
The structure and evolution of stars
Sternentstehung - Star Formation Sommersemester 2006 Henrik Beuther & Thomas Henning 24.4 Today: Introduction & Overview 1.5 Public Holiday: Tag der Arbeit.
ASCI/Alliances Center for Astrophysical Thermonuclear Flashes Simulating Self-Gravitating Flows with FLASH P. M. Ricker, K. Olson, and F. X. Timmes Motivation:
L 4 - Stellar Evolution II: August-September, L 4: Collapse phase – observational evidence Background image: courtesy Gålfalk &
Properties of stars during hydrogen burning Hydrogen burning is first major hydrostatic burning phase of a star: Hydrostatic equilibrium: a fluid element.
Prospects and Problems of Using Galaxy Clusters for Precision Cosmology Jack Burns Center for Astrophysics and Space Astronomy University of Colorado,
The Influence of Radiative Transfer on SPH Simulations of Star Formation Stuart C. Whitehouse and Matthew R. Bate
Press-Schechter Formalism: Structure Formation by Self-Similar Condensation Jean P. Walker Based on Press & Schechter’s 1974 Paper.
Winds of cool supergiant stars driven by Alfvén waves
Convection in Neutron Stars Department of Physics National Tsing Hua University G.T. Chen 2004/5/20 Convection in the surface layers of neutron stars Juan.
Two stories from the life of binaries: getting bigger and making magnetars Sergei Popov, Mikhail Prokhorov (SAI MSU) This week SAI celebrates its 175 anniversary.
An introduction to the Physics of the Interstellar Medium III. Gravity in the ISM Patrick Hennebelle.
Infall and Outflow. Infall and Outflow Early History: pre-1990* David J. Wilner (CfA) Dense Cores in Dark Clouds LXV: A Symposium in Honor of the 65 th.
Processes in Protoplanetary Disks
Interesting News… Regulus Age: a few hundred million years Mass: 3.5 solar masses Rotation Period:
The formation of stars and planets
Star and Planet Formation Sommer term 2007 Henrik Beuther & Sebastian Wolf 16.4 Introduction (H.B. & S.W.) 23.4 Physical processes, heating and cooling.
How Massive are the First Stars? Statistical Study of the primordial star formation  M popIII ALMA 北海道大学 / Jan , 2013 ○ Shingo Hirano.
The formation of stars and planets Day 2, Topic 2: Self-gravitating hydrostatic gas spheres Lecture by: C.P. Dullemond.
Deciphering Ancient Terrsa 20 Apr 2010 Low-metallicity star formation and Pop III-II transition Kazu Omukai (Kyoto U.) Collaborators: Naoki.
Equation Of State and back bending phenomenon in rotating neutron stars 1 st Astro-PF Workshop – CAMK, 14 October 2004 Compact Stars: structure, dynamics,
On the Property of Collapsing Primordial Cloud Core Tsuribe, T. (Osaka University) 2003/09/03-04 at Niigata Univ.
Collapsar Accretion and the Gamma-Ray Burst X-Ray Light Curve Chris Lindner Milos Milosavljevic, Sean M. Couch, Pawan Kumar.
Origin of solar systems 30 June - 2 July 2009 by Klaus Jockers Max-Planck-Institut of Solar System Science Katlenburg-Lindau.
BGU WISAP Spectral and Algebraic Instabilities in Thin Keplerian Disks: I – Linear Theory Edward Liverts Michael Mond Yuri Shtemler.
Excesses of Magnetic Flux and Angular Momentum in Stars National Astronomical Observatory (NAOJ) Kohji Tomisaka.
1 S. Davis, April 2004 A Beta-Viscosity Model for the Evolving Solar Nebula Sanford S Davis Workshop on Modeling the Structure, Chemistry, and Appearance.
Non-isothermal Gravoturbulent Fragmentation: Effects on the IMF A.-K. Jappsen¹, R.S. Klessen¹, R.B. Larson²,Y. Li 3, M.-M. Mac Low 3 ¹Astrophysikalisches.
M. Onofri, F. Malara, P. Veltri Compressible magnetohydrodynamics simulations of the RFP with anisotropic thermal conductivity Dipartimento di Fisica,
Line emission by the first star formation Hiromi Mizusawa(Niigata University) Collaborators Ryoichi Nishi (Niigata University) Kazuyuki Omukai (NAOJ) Formation.
Lecture 15 main sequence evolution. Recall: Initial cloud collapse A collapsing molecular cloud starts off simply:  In free-fall, assuming the pressure.
Emission measure distribution in loops impulsively heated at the footpoints Paola Testa, Giovanni Peres, Fabio Reale Universita’ di Palermo Solar Coronal.
Masahiro Machida (Kyoto Univ.) Shu-ichiro Inutsuka (Kyoto Univ.), Tomoaki Matsumoto (Hosei Univ.) Outflow jet first coreprotostar v~5 km/s v~50 km/s 360.
Warm Absorbers: Are They Disk Outflows? Daniel Proga UNLV.
Max-Planck Institute for Solar System Research, Katlenburg-Lindau 30 June-2 July 2009, Course on Origin of Solar System 2 Max-Planck Institute for Solar.
Fitting Magnetized Molecular Cloud Collapse Models to NGC 1333 IRAS 4A Pau Frau Josep Miquel Girart Daniele Galli Institut de Ciències de l’Espai (IEEC-CSIC)
Outflows from YSOs and Angular Momentum Transfer National Astronomical Observatory (NAOJ) Kohji Tomisaka.
The University of Western Ontario Shantanu Basu and Eduard Vorobyov Cores to Disks to Protostars: The Effect of the Core Envelope on Accretion and Disk.
Fragmentation and Evolution of the First Core
Physics 778 – Star formation: Protostellar disks Ralph Pudritz.
Magneto-hydrodynamic Simulations of Collapsars Shin-ichiro Fujimoto (Kumamoto National College of Technology), Collaborators: Kei Kotake(NAOJ), Sho-ichi.
Accreting isolated neutron stars. Magnetic rotator Observational appearances of NSs (if we are not speaking about cooling) are mainly determined by P,
Jonathan C. Tan Christopher F. McKee The Accretion Physics of Primordial Protostars.
A resolution of the magnetic braking catastrophe during the second collapse cc2yso UWO, May 17, 2010 – Wolf Dapp Wolf B. Dapp & Shantanu Basu.
Star Formation Triggered By First Supernovae Fumitaka Nakamura (Niigata Univ.)
Lines from the first-generation star formation process Hiromi Mizusawa(Niigata University) Collaborators Ryoichi Nishi (Niigata University) Kazuyuki Omukai.
L 2: Pre-collapse phase – Theory
On the origin of Microturbulence in hot stars
Spectral and Algebraic Instabilities in Thin Keplerian Disks: I – Linear Theory Edward Liverts Michael Mond Yuri Shtemler.
FORMATION OF LOW-MASS COMPANIONS BY DISC FRAGMENTATION
Myeong-Gu Park (Kyungpook National University, KOREA)
Pre-Main-Sequence of A stars
Star Formation.
Simulations parameters Numerical Simulations Velocity Distribution
Prof. dr. A. Achterberg, Astronomical Dept
Eduard Vorobyov and Shantanu Basu
Mayer et al Viability of Giant Planet Formation by Direct Gravitational Instability Roman Rafikov (CITA)
The structure and evolution of stars
Presentation transcript:

L 3 - Stellar Evolution I: November-December, L 3: Collapse phase – theoretical models Background image: courtesy ESO - B68 with VLT ANTU and FORS 1

L 3 - Stellar Evolution I: November-December, L 3: Collapse phase – theoretical models Background image: courtesy ESO - B68 with VLT ANTU and FORS 1 The Formation of Stars Chapters: 9, 10, 12

L 3 - Stellar Evolution I: November-December, L 3: Collapse phase – theoretical models Background image: courtesy ESO - B68 with VLT ANTU and FORS 1 Barnard 68 considered a pre-collapse/collapse candidate

L 3 - Stellar Evolution I: November-December, L 3: Collapse phase – theoretical models Background image: courtesy ESO - B68 with VLT ANTU and FORS 1 If you discuss methods and techniques of collapse calculations: consider sensitivity to gridding, boundary conditions; access to a standard code? (run it)

L 3 - Stellar Evolution I: November-December, Time scales: low mass star formation

L 3 - Stellar Evolution I: November-December, Generic types of theories of collapse analytical semi-analytical numerical

L 3 - Stellar Evolution I: November-December, Jeans (1927) MNRAS 87, 720 On Liquid Stars Joel Tholine (1982) Hydrodynamic Collapse Fundamental Cosmic Physics Vol. 8, pp. 1-82

L 3 - Stellar Evolution I: November-December, Early Work Basic Insights

L 3 - Stellar Evolution I: November-December, x 2 x10 density time

L 3 - Stellar Evolution I: November-December, Penston 1969, MNRAS 144, 425 Larson 1969, MNRAS 145, 271 Shu 1977, ApJ 214, 488 Hunter 1977, ApJ 218, 834 Self-similarity solutions Isothermal spherical collapse

L 3 - Stellar Evolution I: November-December, Mass Definition Continuity Equation Momentum equation eos

L 3 - Stellar Evolution I: November-December, Similarity Variable

L 3 - Stellar Evolution I: November-December,

L 3 - Stellar Evolution I: November-December, Palla & Stahler call this Eq the isothermal Lane-Emden equation LE derived for polytropes ( P = k  n ), e.g. fully convective stars: n=3/2 (=1+1/m)

L 3 - Stellar Evolution I: November-December, LP = Larson, Penston H = Hunter EW = Expansion Wave (Shu) velocity density

L 3 - Stellar Evolution I: November-December, LP = Larson, Penston H = Hunter EW = Expansion Wave (Shu) velocity density supersonic

L 3 - Stellar Evolution I: November-December, Bonnor 1956 MNRAS 116, 351 centrally condensed flat distribution Shu 1977 extreme case

L 3 - Stellar Evolution I: November-December, Inside-out collapse (Shu 1977) Mass accretion rate a constant of the cloud Mass accretion time scale

L 3 - Stellar Evolution I: November-December, Foster & Chevalier 1993 Numerical simulations of non-singular isothermal spheres Like Hunter 1977: 1 solution has Shu’s EW as 1 limit models resemble LP with infall v ~ - 3 c s (homologous inflow) Why Shu 1977 commonly used ? (in particular, dM/dt = constant)

L 3 - Stellar Evolution I: November-December, (  = 0 at core formation;  ~ 2 t ff ) density r -2 r -3/2 Initial & boundary conditions Foster & Chevalier 1993, ApJ 416, 311

L 3 - Stellar Evolution I: November-December, compressional luminosity: pre-core formation Cloud boundary  max = Foster & Chevalier

L 3 - Stellar Evolution I: November-December, compressional luminosity: pre-core formation Foster & Chevalier Tscharnuter 1d models of 1 M o collapse: 1 st core formation 0.01 M o Cloud boundary  max = 6.541

L 3 - Stellar Evolution I: November-December, Inside-out collapse (Shu 1977) Why Shu 1977 commonly used ?...computational convenience...small number of parameters

L 3 - Stellar Evolution I: November-December, Gravitational collapse: Example inside-out (Shu 1977, ApJ 214, 488) not from Shu model p = -1.5 p = -2 R inf = c s t inf  = -0.5  = 0 adapted from Hartstein & Liseau 1998, AA 332, 703 ~ r p ~ r 

L 3 - Stellar Evolution I: November-December, predicted spectral line profiles of ground state ortho- and para-water (H 2 O) for inside-out collapse [B 335] adapted from Hartstein & Liseau 1998, AA 332, 703 Herschel HIFI S /T A ~ 500 Jy/K and o/p = 3 assumed infall region unresolved at 557 GHz

L 3 - Stellar Evolution I: November-December, Magnetised isothermal clouds Magnetic fields neglected in hydrodynamics of isothermal spheres: not important ?... Examples: Krasnopolsky & Königl 2002 Self-similar collapse of rotating magnetic molecular cloud cores, ApJ 580, 987 Allen, Shu & Li 2003 Collapse of singular isothermal toroids, I. Nonrotating ApJ 599, 351 II. Rotation & magnetic braking ApJ 599, 363 Book Chapters

L 3 - Stellar Evolution I: November-December, Allen et al: Development of pseudodisk Constant mass accretion rate

L 3 - Stellar Evolution I: November-December, Anything missing ?

L 3 - Stellar Evolution I: November-December, Isothermal eos No heating and cooling processes included Winkler & Newman 1980, ApJ 236, 201; ApJ 238, 311 Spherical, nonrotating, nonmagnetic, 1 M o momentum energy ! rad transfer ! continuity definition

L 3 - Stellar Evolution I: November-December, Pre-main-sequence evolution begins after collapse or main accretion phase Stahler, Shu & Taam 1980, ApJ 241, 637; ApJ 242, 226 protostellar evolution during main accretion phase

L 3 - Stellar Evolution I: November-December, Stahler (and Palla & Stahler ch. 11.2): stellar birthline Deuterium burning acts as a thermostat 2 H ( p,  ) 3 He Reaction rates (Harris et al. 1983, ARAA 21, 165) -> temperature sensitivity Assignment: anyone? Deuterium Burning Protostellar Pulsations

L 3 - Stellar Evolution I: November-December, Protostar evolution of a single star Fragmentation during collapse ?

L 3 - Stellar Evolution I: November-December, Analytically, Tohline (1982): fragmentation of isothermal or adiabatic spheres 1.Isothermal collapse (  = 1): Perturbation analysis of pressure-free sphere -> fragmentation during collapse No preferred wavelength -> perturbations of all sizes grow at the same rate Real clouds not pressure-free and adiabatic case more relevant...

L 3 - Stellar Evolution I: November-December, Adiabatic collapse:

L 3 - Stellar Evolution I: November-December, Numerically, General discussion: Hennebelle et al. 2004, MNRAS 348, 687 Sheets: Burkert & Hartmann 2004 ApJ 616, 288 See movie in L7 numerical simulations Rapid collapse Reid et al. 2002, ApJ 570, 231

L 3 - Stellar Evolution I: November-December, L 3: conclusions analytical collapse solutions differ in results one such solution has remained `successful´: inside-out versus outside-in collapse similarity technique applied also to magnetised and rotating clouds numerical simulations indicate otherwise, but dM/dt = constant still preferred (?) L 3: open questions how realistic are the assumptions made (resulting in e.g. supersonic/subsonic flow) ? what is the `correct eos´ ? how important is geometry ? Initial & boundary conditions ?