 4-azimuth MAX-DOAS measurements in Mainz  Characterisation of the information content using 3D RTM MAXDOAS horizontal (averaging) effects MPI for Chemistry.

Slides:



Advertisements
Similar presentations
SURFACE SOLAR IRRADIANCE FROM SEVIRI SATELLITE DATA
Advertisements

Validation of SCIA’s reflectance and polarisation (Acarreta, de Graaf, Tilstra, Stammes, Krijger ) Envisat Validation Workshop, Frascati, 9-13 December.
 nm)  nm) PurposeSpatial Resolution (km) Ozone, SO 2, UV8 3251Ozone8 3403Aerosols, UV, and Volcanic Ash8 3883Aerosols, Clouds, UV and Volcanic.
Atmospheric Optics - I. Recap Condensation above the Earth surface produces clouds. Clouds are divided into 4 main groups: ♦ High ♦ Middle ♦ Low ♦ Clouds.
IUP Heidelberg – NDACC/NORS Meeting – July Aerosol Profiling during CINDI Udo Frieß Henk Klein Baltink Katrijn Clémer Udo Frieß Hitoshi Irie Tim.
The NARVAL-North campaign: Postfrontal convective cloud research using the HALO aircraft Felix Ament, Nicole Albern, Stephan Bakan, Felix Erdmann, Lutz.
Institute of Environmental Physics and Remote Sensing IUP/IFE-UB Physics/Electrical Engineering Department 1 Institute.
10/05/041 Utilisation of satellite data in the verification of HIRLAM cloud forecasts Christoph Zingerle and Pertti Nurmi.
14-16 April 2003International Limb Workshop, Bremen On two potential sources of systematic error in retrievals using limb-scattered sunlight Chris A. McLinden.
A 21 F A 21 F Parameterization of Aerosol and Cirrus Cloud Effects on Reflected Sunlight Spectra Measured From Space: Application of the.
Page 1 1 of 21, 28th Review of Atmospheric Transmission Models, 6/14/2006 A Two Orders of Scattering Approach to Account for Polarization in Near Infrared.
1 Motivation 2 Instrumentation and Retrieval 3 CONTRAST Profile Comparison Stratospheric case study 4 TORERO NH/SH gradients 5 Summary and conclusions.
Institute for Environmental Physics and Remote Sensing (IUP/ife) Physics/Electrical Engineering 1 K.-U. Eichmann, C. von Savigny, G. Rohen, J. Kaiser,
Status S5p TROPOMI Pepijn Veefkind.
Remote-sensing of the environment (RSE) ATMOS Analysis of the Composition of Clouds with Extended Polarization Techniques L. Pfitzenmaier, H. Russchenbergs.
Irie et al., Multi-component retrievals for MAX-DOAS, 2 nd CINDI workshop, Brussels, March 10-11, 2010 Multi-component vertical profile retrievals for.
1. The MPI MAX-DOAS inversion scheme 2. Cloud classification 3. Results: Aerosol OD: Correlation with AERONET Surface extinction: Correlation with Nephelometer.
Deriving vertical profiles of free tropospheric trace gases from ground based measurements: Implications for oxidation of atmospheric mercury Sean Coburn.
MAXDOAS formaldehyde slant column measurements during CINDI: intercomparison and analysis improvement G. Pinardi, M. Van Roozendael, N. Abuhassan, C. Adams,
ICDC7, Boulder, September 2005 CH 4 TOTAL COLUMNS FROM SCIAMACHY – COMPARISON WITH ATMOSPHERIC MODELS P. Bergamaschi 1, C. Frankenberg 2, J.F. Meirink.
Validation of a Satellite Retrieval of Tropospheric Nitrogen Dioxide Randall Martin Dalhousie University Smithsonian Astrophysical Observatory Daniel Jacob.
M. Van Roozendael, AMFIC Final Meeting, 23 Oct 2009, Beijing, China1 MAXDOAS measurements in Beijing M. Van Roozendael 1, K. Clémer 1, C. Fayt 1, C. Hermans.
Determination of the optical thickness and effective radius from reflected solar radiation measurements David Painemal MPO531.
Elena Spinei and George Mount Washington State University 1 CINDI workshop March 2010.
 Expectations 2004  Achievements  Summary + Outlook AT-2 Task Group 1 Progress Thomas Wagner.
Rutherford Appleton Laboratory Requirements Consolidation of the Near-Infrared Channel of the GMES-Sentinel-5 UVNS Instrument: FP, 25 April 2014, ESTEC.
Observations of Formaldehyde and Related Atmospheric Species Using Multi-Axis Spectroscopy Christopher P. Beekman and Dr. Heather C. Allen Department of.
BrO Retrievals for UV-Visible Ground-Based Measurements Cristen Adams 1, Annemarie Fraser 1, Kimberly Strong 1, Robyn Schofield 2 1 Department of Physics,
A. Bracher, L. N. Lamsal, M. Weber, J. P. Burrows University of Bremen, FB 1, Institute of Environmental Physics, P O Box , D Bremen, Germany.
SCIAMACHY satellite validation during the field campaigns CINDI and TRANSBROM Enno Peters, Folkard Wittrock, Andreas Richter, Mark Weber and John P. Burrows.
UV Aerosol Indices from (TROP)OMI An investigation of viewing angle dependence , Marloes Penning de Vries and Thomas Wagner Max Planck Institute.
Institute of Environmental Physics and Remote Sensing IUP/IFE-UB Physics/Electrical Engineering Department 1 Measurements.
CINDI – Profiling by Tim Hay. Read DSCD or SCD file Write SZAs, SAzs, elevations, & viewing Azs to geometry file for RT Read prescribed profiles and settings:
BBC Workshop DeBilt, 18.–19. October 2004 Reconstruction of three dimensional cloud fields from two dimensional input datasets Klemens Barfus & Franz H.
Satellite group MPI Mainz Investigating Global Long-term Data Sets of the Atmospheric H 2 O VCD and of Cloud Properties.
Kenneth Pickering (NASA GSFC), Lok Lamsal (USRA, NASA GSFC), Christopher Loughner (UMD, NASA GSFC), Scott Janz (NASA GSFC), Nick Krotkov (NASA GSFC), Andy.
Intercomparison of OMI NO 2 and HCHO air mass factor calculations: recommendations and best practices A. Lorente, S. Döerner, A. Hilboll, H. Yu and K.
MAX-DOAS observations and their application to validations of satellite and model data in Wuxi, China 1) Satellite group, Max Planck institute for Chemistry,
Comparison of OMI NO 2 with Ground-based Direct Sun Measurements at NASA GSFC and JPL Table Mountain during Summer 2007 George H. Mount & Elena Spinei.
Plans to study horizontal NO 2 distribution Ankie Piters, Tim Vlemmix, KNMI data from: INTA, IUPB, JAMSTEC, KNMI, Leicester, NASA Objectives: –Satellite.
Retrieval of Vertical Columns of Sulfur Dioxide from SCIAMACHY and OMI: Air Mass Factor Algorithm Development, Validation, and Error Analysis Chulkyu Lee.
Weighting functions (Box AMFs) for Limb measurements of stratospheric trace species using 3D Monte Carlo RTM Christoph v. Friedeburg, A. Butz, F. Weidner,
1 Examining Seasonal Variation of Space-based Tropospheric NO 2 Columns Lok Lamsal.
Study on NO x lifetime in chemistry transport model Ran Yin.
ACKNOWLEDGEMENTS: Rob Albee, Jim Wendell, Stan Unander, NOAA Climate Forcing program, DOE ARM program, NASA, Met. Service Canada, Chinese Met. Agency,
Measurements of pollutants and their spatial distributions over the Los Angeles Basin Ross Cheung1,2, Olga Pikelnaya1,2, Catalina Tsai1, Jochen Stutz1,2,
AMFIC Progress Meeting, Barcelona, 24 June Space-nadir observations of formaldehyde, glyoxal and SO 2 columns with SCIAMACHY and GOME-2. Isabelle.
 Methodology  Comparison with others instruments  Impact of daily AMF  Conclusions Tropospheric NO 2 from SAOZ F. Goutail, A. Pazmino, A. Griesfeller,
MAXDOAS observations in Beijing G. Pinardi, K. Clémer, C. Hermans, C. Fayt, M. Van Roozendael BIRA-IASB Pucai Wang & Jianhui Bai IAP/CAS 24 June 2009,
AEROCOM AODs are systematically smaller than MODIS, with slightly larger/smaller differences in winter/summer. Aerosol optical properties are difficult.
EOS-AURA Science Team Meeting September 2009, Leiden Comparison of NO 2 profiles derived from MAX-DOAS measurements and model simulations.
TEMPO Validation Capabilities Pandora NO 2 Total and tropospheric columns of NO2 from direct sun measurements -> column along a narrow cone (0.5 o ), actual.
Validation of OMI and SCIAMACHY tropospheric NO 2 columns using DANDELIONS ground-based data J. Hains 1, H. Volten 2, F. Boersma 1, F. Wittrock 3, A. Richter.
Status of ongoing Kiruna site Myojeong Gu, Thomas Wagner MPI for Chemistry, Mainz, Germany 1.
MPI for Chemistry, Mainz, Germany BIRA/IASB, Brussels, Belgium University of Colorado, Boulder, USA CAS Hefei, China CAMS Beijing, China University of.
First results of the aerosol profiling group IUP Heidelberg BIRA-IASB MPIC Mainz IUP Bremen JAMSTEC WSU KNMI NIWA Univ. Leicester PSI TNO RIVM KNMI.
J. Redemann 1, B. Schmid 1, J.A. Eilers 2, R. Kahn 3, R.C. Levy 4,5, P.B. Russell 2, J.M. Livingston 6, P.V. Hobbs 7, W.L. Smith Jr. 8, B.N. Holben 4 1.
MAX-DOAS observations of tropospheric aerosols and formaldehyde above China Tim Vlemmix Francois Hendrick Michel Van Roozendael Isabelle De Smedt Katrijn.
Rutherford Appleton Laboratory Requirements Consolidation of the Near-Infrared Channel of the GMES-Sentinel-5 UVNS Instrument: FP, 25 April 2014, ESTEC.
DOAS workshop 2015, Brussels, July 2015
Aerosol retrieval from spectral measurements in twilight conditions: ground-based and satellite-based cases Nina Mateshvili (1), Didier Fussen (1), Giuli.
Julia Remmers1, Thomas Wagner1
GEOGRAPHIC INFORMATION SYSTEMS & RS INTERVIEW QUESTIONS ANSWERS
Bruchkouski I. , Krasouski A. , Dziomin V. , Svetashev A. G
Challenges/Opportunities with mobile (car/airborne) DOAS
Absolute calibration of sky radiances, colour indices and O4 DSCDs obtained from MAX-DOAS measurements T. Wagner1, S. Beirle1, S. Dörner1, M. Penning de.
Yang Wang (1, 2), Thomas Wagner (1), Pinhua Xie (2), Julia Remmers (1), Ang Li (2), Johannes Lampel (3, 1), Udo Friess (3), Enno.Peters (4), Folkard Wittrock.
The radiative properties of inhomogeneous cirrus clouds
Retrieval of SO2 Vertical Columns from SCIAMACHY and OMI: Air Mass Factor Algorithm Development and Validation Chulkyu Lee, Aaron van Dokelaar, Gray O’Byrne:
MAXDOAS horizontal (averaging) effects
Presentation transcript:

 4-azimuth MAX-DOAS measurements in Mainz  Characterisation of the information content using 3D RTM MAXDOAS horizontal (averaging) effects MPI for Chemistry (MPIC), Mainz, Germany T. Wagner, J. Remmers, S. Beirle Master Thesis, Julia Remmers

Comparison of the Telescopes (5°) NO 2 DSCDs

Gradient plots (1) Measurement for the horizontal variability Possibility to detect sources

N S WE Gradient plots (2) NO 2 DSCDs

Gradient plots (3)

3D, spherical Monte Carlo RTM MCARTIM, Tim Deutschmann - 1D, 2D, 3D Box AMF Visualisation of a Monte-Carlo radiative transfer simulation (yellow: surface reflection, red: Rayleigh scattering, green: particle scattering)

Box AMF 0-1km, 500nm, no aerosols 10 km 5 km 0 km -200 km0 km200 km MAX-DOAS elevation: 1° horizontal grid: 8 km x 8km vertical grid: 100m SZA: 70°

Box AMF 0-1km, 360nm, no aerosols 10 km 5 km 0 km -200 km0 km200 km MAX-DOAS elevation: 1° horizontal grid: 8 km x 8km vertical grid: 100m SZA: 70°

Box AMF 0-1km, 360nm, aerosols 1-1km, OD km 5 km 0 km -200 km0 km200 km MAX-DOAS elevation: 1° horizontal grid: 8 km x 8km vertical grid: 100m SZA: 70°

Box AMF 0-1km, 360nm, no aerosols 10 km 5 km 0 km -200 km0 km200 km MAX-DOAS elevation: 1° horizontal grid: 8 km x 8km vertical grid: 100m SZA: 70°

Box AMF 0-1km, 360nm, no aerosols 10 km 5 km 0 km -200 km0 km200 km MAX-DOAS elevation: 2° horizontal grid: 8 km x 8km vertical grid: 100m SZA: 70°

Box AMF 0-1km, 360nm, no aerosols 10 km 5 km 0 km -200 km0 km200 km MAX-DOAS elevation: 5° horizontal grid: 8 km x 8km vertical grid: 100m SZA: 70°

Box AMF 0-1km, 360nm, no aerosols 10 km 5 km 0 km -200 km0 km200 km MAX-DOAS elevation: 10° horizontal grid: 8 km x 8km vertical grid: 100m SZA: 70°

Box AMF 0-1km, 360nm, no aerosols 10 km 5 km 0 km -200 km0 km200 km MAX-DOAS elevation: 30° horizontal grid: 8 km x 8km vertical grid: 100m SZA: 70°

Box AMF 0-1km, 360nm, no aerosols 50 km 0 km -50 km 0 km50 km horizontal grid: 2km x 2km SCIA: 30 km x 60 km MAX-DOAS elevation: 1°

Box AMF 0-1km, 360nm, no aerosols 50 km 0 km -50 km 0 km50 km horizontal grid: 2km x 2km SCIA: 30 km x 60 km MAX-DOAS elevation: 1°

Box AMF 0-1km, 360nm, no aerosols 50 km 0 km -50 km 0 km50 km horizontal grid: 2km x 2km SCIA: 30 km x 60 km MAX-DOAS elevation: 1°

Box AMF 0-1km, 500nm, no aerosols 50 km 0 km -50 km 0 km50 km horizontal grid: 2km x 2km SCIA: 30 km x 60 km elevation: 1°

Box AMF 0-1km, 500nm, aerosols: 0-1km, OD km 0 km -50 km 0 km50 km horizontal grid: 2km x 2km SCIA: 30 km x 60 km elevation: 1°

Box AMF 0-1km, 500nm, aerosols: 0-1km, OD km 0 km -50 km 0 km50 km horizontal grid: 2km x 2km SCIA: 30 km x 60 km elevation: 1°

Box AMF 0-1km, 500nm, aerosols: 0-1km, OD km 0 km -50 km 0 km50 km horizontal grid: 2km x 2km SCIA: 30 km x 60 km elevation: 1°

Box AMF 0-1km, 500nm, aerosols: 0-1km, OD km 0 km -50 km 0 km50 km horizontal grid: 2km x 2km SCIA: 30 km x 60 km elevation: 1°

Box AMF 0-1km, 500nm, aerosols: 0-1km, OD 1 50 km 0 km -50 km 0 km50 km horizontal grid: 2km x 2km SCIA: 30 km x 60 km elevation: 1°

Conclusions Horizontal gradients can be determined from 4-azimuth MAX- DOAS observations => information on location of sources 3D-distribution of the sensitivity of MAX-DOAS depends strongly on wavelength and aerosol load horizontal area with box-AMF > 1 ranges typically from ~3 km to ~30 km spatial resolution of future satellite instruments maches that of MAX-DOAS observations (or is even finer)

Cabauw,

Cabauw,

Cabauw,