Chapter 15 Equilibrium. © 2009, Prentice-Hall, Inc. The Concept of Equilibrium Chemical equilibrium occurs when a reaction and its reverse reaction proceed.

Slides:



Advertisements
Similar presentations
Equilibrium Chapter 15 Chemical Equilibrium John D. Bookstaver St. Charles Community College St. Peters, MO  2006, Prentice Hall Chemistry, The Central.
Advertisements

Chapter 15 Chemical Equilibrium
Equilibrium © 2009, Prentice-Hall, Inc. Chapter 15 Chemical Equilibrium John D. Bookstaver St. Charles Community College Cottleville, MO Chemistry, The.
Quick Equilibrium review. The Concept of Equilibrium As the substance warms it begins to decompose: N 2 O 4 (g)  2NO 2 (g) When enough NO 2 is formed,
Chemical Equilibrium © 2009, Prentice-Hall, Inc..
Chapter 12 Gaseous Chemical Equilibrium. The Concept of Equilibrium Chemical equilibrium occurs when a reaction and its reverse reaction proceed at the.
Chapter 15 Chemical Equilibrium. The Concept of Equilibrium Chemical equilibrium occurs when a reaction and its reverse reaction proceed at the same rate.
Chapter 15 Chemistry the Central Science 12th Ed.
Equilibrium UNIT 12. Overview  Concept of Equilibrium  Equilibrium constant  Equilibrium expression  Heterogeneous vs homogeneous equilibrium  Solving.
Topics in CHM 1046 Intermolecular forces (IMF) Themodynamics
Equilibrium Chapter 15 Chemical Equilibrium. Equilibrium What is a chemical equilibrium? The reaction of hemoglobin with oxygen is a reversible reaction.
Chapter 15 Chemical Equilibrium
Equilibrium L. Scheffler Lincoln High School
Equilibrium Chapter 15 Chemical Equilibrium John D. Bookstaver St. Charles Community College St. Peters, MO  2006, Prentice Hall Chemistry, The Central.
1 Chemical Equilibrium Chapter 13 AP CHEMISTRY. 2 Chemical Equilibrium  The state where the concentrations of all reactants and products remain constant.
Chemical Equilibrium. The Concept of Equilibrium Chemical equilibrium occurs when a reaction and its reverse reaction proceed at the same rate.
Chapter 16: Chemical Equilibrium- General Concepts WHAT IS EQUILIBRIUM?
C h a p t e r 13 Chemical Equilibrium. The Equilibrium State Chemical Equilibrium: The state reached when the concentrations of reactants and products.
Chemical Equilibrium. Rate of forward Rx = Rate of reverse Rx As a system approaches equilibrium, both the forward and reverse reactions are occurring.
Video 7.1 Equilibrium. The Concept of Equilibrium  As a system approaches equilibrium, both the forward and reverse reactions are occurring at different.
17 Chemical Equilibrium.
Chapter 15 Chemical Equilibrium
Equilibrium The Concept of Equilibrium Chemical equilibrium occurs when a reaction and its reverse reaction proceed at the same rate.
Equilibrium Basic Concepts Reversible reactions do not go to completion. –They can occur in either direction Chemical equilibrium exists when two opposing.
Chapter 15 Chemical Equilibrium
AP Chapter 15 Equilibrium *Chapters 15, 16 and 17 are all EQUILIBRIUM chapters* HW:
Chapter 15 Chemical Equilibrium Dr. Subhash Goel South GA State College Douglas, GA Lecture Presentation © 2012 Pearson Education, Inc.
Equilibrium slideshttp:\\asadipour.kmu.ac.ir1.
Chapter 15 Chemical Equilibrium 1. The Concept of Equilibrium Chemical equilibrium occurs when a reaction and its reverse reaction proceed at the same.
Equilibrium © 2009, Prentice-Hall, Inc. Chapter 15 Chemical Equilibrium John D. Bookstaver St. Charles Community College Cottleville, MO Chemistry, The.
Equilibrium © 2009, Prentice-Hall, Inc. Chapter 14 Chemical Equilibrium.
Chemical Equilibrium L. Scheffler. Chemical Equilibrium Chemical equilibrium occurs in chemical reactions that are reversible. In a reaction such as:
Chapter 15 Chemical Equilibrium John D. Bookstaver St. Charles Community College Cottleville, MO Lecture Presentation © 2012 Pearson Education, Inc.
CH 13 Chemical Equilibrium. The Concept of Equilibrium Chemical equilibrium occurs when a reaction and its reverse reaction proceed at the same rate.
Chapter 13.  Equilibrium is not static. It is a highly dynamic state.  Macro level reaction appears to have stopped  Molecular level frantic activity.
8–1 John A. Schreifels Chemistry 212 Chapter 15-1 Chapter 15 Chemical Equilibrium.
Chapter 15 Chemical Equilibrium © 2009, Prentice-Hall, Inc.
Chemical Equilibrium. The Concept of Equilibrium Chemical equilibrium occurs when a reaction and its reverse reaction proceed at the same rate.
Chapter 15 Chemical Equilibrium
Equilibrium Chapter 15 Chemical Equilibrium John D. Bookstaver St. Charles Community College St. Peters, MO  2006, Prentice Hall Chemistry, The Central.
Equilibrium © 2009, Prentice-Hall, Inc. Chapter 7 Chemical Equilibrium Dr Imededdine Arbi Nehdi King Saud University Chemistry, The Central Science, 11th.
CHE1102, Chapter 14 Learn, 1 Chapter 15 Chemical Equilibrium.
Equilibrium The Concept of Equilibrium Chemical equilibrium occurs when a reaction and its reverse reaction proceed at the same rate. © 2012 Pearson Education,
Pacific school of Engineering Sub: C.E.T-2 Topic: Chemical reaction Equilibrium Mayani Chintak Sudani Dhrutik Bhikadiya Hardik.
Chapter 16: Chemical Equilibrium. © 2009, Prentice-Hall, Inc. The Concept of Equilibrium Chemical equilibrium occurs when a reaction and its reverse reaction.
Obj 15.1, The concept of Equilibrium A.) Chemical equilibrium occurs when a reaction and its reverse reaction proceed at the same rate.
Chapter 16: Chemical Equilibrium. The Concept of Equilibrium Chemical equilibrium occurs when a reaction and its reverse reaction proceed at the same.
Equilibrium slideshttp:\\academicstaff.kmu.ac.ir\aliasadipour1.
Chapter 13 Chemical Equilibrium. The Concept of Equilibrium Chemical equilibrium occurs when a reaction and its reverse reaction proceed at the same rate.
Equilibrium Chapter 15 Chemical Equilibrium John D. Bookstaver St. Charles Community College St. Peters, MO  2006, Prentice Hall Chemistry, The Central.
Chapter 15 Chemical Equilibrium
Chapter 15 Chemical Equilibrium
Chapter 15 Chemical Equilibrium
Chemical Equilibrium.
Chapter 15 Chemical Equilibrium
Chapter 15 Chemical Equilibrium
Topic 7- Equilibrium.
Chapter 15 Chemical Equilibrium
Chapter 15 Chemical Equilibrium
Chapter 15 Chemical Equilibrium
Chapter 15 Chemical Equilibrium
Chapter 15 Chemical Equilibrium
The Equilibrium Constant
Unit 2.6: Equilibrium.
Equilibrium Chapter 13.
Chapter 14 Chemical Equilibrium
Chemical Equilibrium Chemistry, The Central Science, 10th edition
Presentation transcript:

Chapter 15 Equilibrium

© 2009, Prentice-Hall, Inc. The Concept of Equilibrium Chemical equilibrium occurs when a reaction and its reverse reaction proceed at the same rate.

© 2009, Prentice-Hall, Inc. A System at Equilibrium As a system approaches equilibrium, both the forward and reverse reactions are occurring. At equilibrium, the forward and reverse reactions are proceeding at the same rate. Once equilibrium is achieved, the amount of each reactant and product remains constant.

© 2009, Prentice-Hall, Inc. Depicting Equilibrium Since, in a system at equilibrium, both the forward and reverse reactions are being carried out, we write its equation with a double arrow. N 2 O 4 (g) 2 NO 2 (g)

© 2009, Prentice-Hall, Inc. The Equilibrium Constant Forward reaction: N 2 O 4 (g)  2 NO 2 (g) Rate Law: Rate = k f [N 2 O 4 ] Reverse reaction: 2 NO 2 (g)  N 2 O 4 (g) Rate Law: Rate = k r [NO 2 ] 2

© 2009, Prentice-Hall, Inc. The Equilibrium Constant Therefore, at equilibrium Rate f = Rate r k f [N 2 O 4 ] = k r [NO 2 ] 2 Rewriting this, it becomes kfkrkfkr [NO 2 ] 2 [N 2 O 4 ] =

© 2009, Prentice-Hall, Inc. The Equilibrium Constant Consider the generalized reaction The equilibrium expression for this reaction would be K c = [C] c [D] d [A] a [B] b aA + bBcC + dD

The Concentrations of Solids and Liquids Are Essentially Constant Therefore, the concentrations of solids and liquids do not appear in the equilibrium expression. K c = [Pb 2+ ] [Cl - ] 2 PbCl 2 (s) Pb 2+ (aq) + 2 Cl - (aq)

© 2009, Prentice-Hall, Inc. The Equilibrium Constant Since pressure is proportional to concentration for gases in a closed system, the equilibrium expression can also be written K p = (P C c ) (P D d ) (P A a ) (P B b )

© 2009, Prentice-Hall, Inc. Relationship Between K c and K p From the Ideal Gas Law we know that Rearranging it, we get PV = nRT P = RT nVnV Since n/V = M =[ ]….

© 2009, Prentice-Hall, Inc. Relationship Between K c and K p Plugging this into the expression for K p for each substance, the relationship between K c and K p becomes where K p = K c (RT)  n  n = (moles of gaseous product) - (moles of gaseous reactant) In the synthesis of ammonia from nitrogen and hydrogen, K c = 9.60 at 300 °C. Calculate K p for this reaction at this temperature.

© 2009, Prentice-Hall, Inc. What Does the Value of K Mean? If K>>1, the reaction is product-favored; product predominates at equilibrium. If K<<1, the reaction is reactant-favored; reactant predominates at equilibrium.

© 2009, Prentice-Hall, Inc. Manipulating Equilibrium Constants The K c of a reaction in the reverse reaction is the reciprocal of the K c of the forward reaction. The equilibrium constant for the reaction of N 2 with O 2 to form NO equals K c = 1 × 10 –30 at 25 °C: Using this information, write the equilibrium constant expression and calculate the equilibrium constant for the following reaction:

© 2009, Prentice-Hall, Inc. Manipulating Equilibrium Constants The K c of a reaction that has been multiplied by a number is the K c raised to a power that is equal to that number. K c = at 100  C N 2 O 4(g) 2 NO 2(g) K c = 2 N 2 O 4(g) 4 NO 2(g)

© 2009, Prentice-Hall, Inc. Manipulating Equilibrium Constants The K c for a net reaction made up of two or more steps is the product of the K c for the individual steps. Given the following information, determine the value of K c for the reaction

© 2009, Prentice-Hall, Inc. An Equilibrium Problem A closed system initially containing x M H 2 and x M I 2 at 448  C is allowed to reach equilibrium. Analysis of the equilibrium mixture shows that the concentration of HI is 1.87 x M. Calculate K c at 448  C for the reaction taking place, which is H 2 (g) + I 2 (s) 2 HI (g)

© 2009, Prentice-Hall, Inc. ICE Tables [H 2 ], M[I 2 ], M[HI], M Initially1.000 x x Change At equilibrium1.87 x 10 -3

© 2009, Prentice-Hall, Inc. The Reaction Quotient (Q) Q gives the same ratio the equilibrium expression gives, but for a system that is not necessarily at equilibrium. To calculate Q, one substitutes the initial concentrations on reactants and products into the equilibrium expression.

What does the value of Q mean? If Q= K, the system is at equilibrium. IF Q> K, there is too much product present and the system must shift in reverse to achieve equilibrium If Q< K, there is too much reactant present and the system must shift forward to achieve equilbrium.

© 2009, Prentice-Hall, Inc. Free Energy and Equilibrium Under any conditions, standard or nonstandard, the free energy change can be found this way:  G =  G  + RT lnQ (Under standard conditions, all concentrations are 1 M, so Q = 1 and lnQ = 0; the last term drops out.)

© 2009, Prentice-Hall, Inc. Free Energy and Equilibrium At equilibrium, Q = K, and  G = 0. The equation becomes 0 =  G  + RT lnK Rearranging, this becomes  G  =  RT lnK (note that  G  is in kJ and R is in J) If ΔG° is negative, then ln K must be positive…K must be greater than 1…more products are present at equilibrium…reaction is spontaneous in forward direction.

© 2009, Prentice-Hall, Inc. Le Châtelier’s Principle “If a system at equilibrium is disturbed by a change in temperature, pressure, or the concentration of one of the components, the system will shift its equilibrium position so as to counteract the effect of the disturbance.” ****ONLY a CHANGE IN TEMPERATURE will affect the value of the equilibrium constant.

© 2009, Prentice-Hall, Inc. Catalysts Catalysts increase the rate of both the forward and reverse reactions. When one uses a catalyst, equilibrium is achieved faster, but the equilibrium composition remains unaltered.