Expected value (µ) = ∑ y P(y) Sample mean (X) = ∑X i / n Sample standard deviation = √[∑(X i - X) 2 / (n-1)] iid: independent and identically distributed.

Slides:



Advertisements
Similar presentations
Advanced strategies for postflop play Strategy: SnG / tournaments.
Advertisements

Short Stack Strategy – How to play after the flop Strategy: No Limit.
Mathematics and the Game of Poker
Intelligence for Games and Puzzles1 Poker: Opponent Modelling Early AI work on poker used simplified.
Intro to Probability & Games
Introduction to the Big Stack Strategy (BSS) Strategy: No Limit.
Undergrad probability course (not a poker strategy guide nor an endorsement of gambling). Standard undergrad topics + random walks, arcsine laws, and a.
Stat 35b: Introduction to Probability with Applications to Poker Outline for the day: 1.Ly vs Negreanu. 2.Flush draws and straight draws 3.Project B teams.
Texas Holdem Poker With Q-Learning. First Round (pre-flop) PlayerOpponent.
Overview Odds Pot Odds Outs Probability to Hit an Out
Online Poker James Gilman. Topics ●Hand Probabilities ●Betting Odds ●Odds of winning ●Expected Value ●Decision Making ●Poker Statistics ●Variance.
Stat 35b: Introduction to Probability with Applications to Poker Outline for the day: 1.Straight draws. 2.HW2 clarification. 3.Greenstein vs. Farha AA.
Brain Teasers. Answer 3 Quantitative Finance Society Gambling Strategies & Statistics.
Introduction for Rotarians
Stat 35b: Introduction to Probability with Applications to Poker Outline for the day: 1.Hand in hw4. 2.Review list 3.Tournament 4.Sample problems * Final.
Stat 35b: Introduction to Probability with Applications to Poker Outline for the day: 0. Collect hw2, return hw1, give out hw3. 1.Project A competition.
Stat 35b: Introduction to Probability with Applications to Poker Outline for the day: 1.Collect Hw4. 2.Review list. 3.Answers to hw4. 4.Project B tournament.
Suppose someone bets (or raises) you, going all-in. What should your chances of winning be in order for you to correctly call? Let B = the amount bet to.
Stat 35b: Introduction to Probability with Applications to Poker Outline for the day, Tue 3/13/12: 1.Collect Hw WSOP main event. 3.Review list.
Stat 35b: Introduction to Probability with Applications to Poker Outline for the day: 1.hw, terms, etc. 2.WSOP example 3. permutations, and combinations.
Shortstack Strategy: How do you play before the flop? Strategy: No Limit.
The challenge of poker NDHU CSIE AI Lab 羅仲耘. 2004/11/04the challenge of poker2 Outline Introduction Texas Hold’em rules Poki’s architecture Betting Strategy.
Poker as a Testbed for Machine Intelligence Research By Darse Billings, Dennis Papp, Jonathan Schaeffer, Duane Szafron Presented By:- Debraj Manna Gada.
Outline for the day: 1.Discuss handout / get new handout. 2.Teams 3.Example projects 4.Expected value 5.Pot odds calculations 6.Hansen / Negreanu 7.P(4.
Stat 35b: Introduction to Probability with Applications to Poker Outline for the day: 1.HW3 2.Project B teams 3.Gold vs. Helmuth 4.Farha vs. Gold 5.Flush.
Stat 35b: Introduction to Probability with Applications to Poker Outline for the day: 1.Deal-making and expected value 2.Odds ratios, revisited 3.Variance.
Stat 35b: Introduction to Probability with Applications to Poker Poker Code competition: all-in or fold.   u 
MIT 15.S50 L ECTURE 5 Friday, January 27 th, 2012.
Stat 35b: Introduction to Probability with Applications to Poker Outline for the day: 1. Review list 2.Bayes’ Rule example 3.CLT example 4.Other examples.
Stat 35b: Introduction to Probability with Applications to Poker Outline for the day: 1.Expected value and pot odds, continued 2.Violette/Elezra example.
All In To put all the rest of your money into the pot.
Introduction to Poker Originally created by Albert Wu,
Stat 35b: Introduction to Probability with Applications to Poker Outline for the day: 1.Project B example, again 2.Booth vs. Ivey 3.Bayes Rule examples.
Penn Poker Fall Strategy Session Series
Stat 35b: Introduction to Probability with Applications to Poker Outline for the day: 1.E(X+Y) = E(X) + E(Y) examples. 2.CLT examples. 3.Lucky poker. 4.Farha.
Stat 35b: Introduction to Probability with Applications to Poker Outline for the day: 1.Odds ratios revisited. 2.Gold/Hellmuth. 3.Deal making. 4.Variance.
Stat 35b: Introduction to Probability with Applications to Poker Outline for the day: 1.Hw, terms, etc. 2.Ly vs. Negreanu (flush draw) example 3. Permutations.
Stat 35b: Introduction to Probability with Applications to Poker Outline for the day: 1.Hand in hw1! Get hw2. 2.Combos, permutations, and A  vs 2  after.
Stat 35b: Introduction to Probability with Applications to Poker Outline for the day: 1.Tournaments 2.Review list 3.Random walk and other examples 4.Evaluations.
1)Hand in HW. 2)No class Tuesday (Veteran’s Day) 3)Midterm Thursday (1 page, double-sided, of notes allowed) 4)Review List 5)Review of Discrete variables.
Stat 35b: Introduction to Probability with Applications to Poker Outline for the day: 1.HW4 notes. 2.Law of Large Numbers (LLN). 3.Central Limit Theorem.
The Mathematics of Poker– Implied Pot Odds Strategy: No-Limit.
(Day 14 was review. Day 15 was the midterm.) Stat 35b: Introduction to Probability with Applications to Poker Outline for the day: 1.Return and review.
Outline: 1) Odds ratios, continued. 2) Expected value revisited, Harrington’s strategy 3) Pot odds 4) Examples.
Stat 35b: Introduction to Probability with Applications to Poker Outline for the day: 1. Combos, permutations, and A  vs 2  after first ace 2.Conditional.
Stat 35b: Introduction to Probability with Applications to Poker Outline for the day: 1.Expected value. 2.Heads up with AA. 3.Heads up with Gus vs.
Stat 35b: Introduction to Probability with Applications to Poker Outline for the day: 1.Review List 2.Review of Discrete variables 3.Nguyen / Szenkuti.
Stat 35b: Introduction to Probability with Applications to Poker Outline for the day: 1.Hw, terms, etc. 2.Ly vs. Negreanu (flush draw) example 3. Permutations.
Stat 35b: Introduction to Probability with Applications to Poker Outline for the day: 1.Odds ratio example again. 2.Random variables. 3.cdf, pmf, and density,
Texas Holdem A Poker Variant vs. Flop TurnRiver. How to Play Everyone is dealt 2 cards face down (Hole Cards) 5 Community Cards Best 5-Card Hand Wins.
Stat 35b: Introduction to Probability with Applications to Poker
Stat 35b: Introduction to Probability with Applications to Poker
Stat 35b: Introduction to Probability with Applications to Poker
Stat 35b: Introduction to Probability with Applications to Poker
Stat 35b: Introduction to Probability with Applications to Poker
Stat 35b: Introduction to Probability with Applications to Poker
Stat 35b: Introduction to Probability with Applications to Poker
Stat 35b: Introduction to Probability with Applications to Poker
Stat 35b: Introduction to Probability with Applications to Poker
Stat 35b: Introduction to Probability with Applications to Poker
Stat 35b: Introduction to Probability with Applications to Poker
Stat 35b: Introduction to Probability with Applications to Poker
Stat 35: Introduction to Probability with Applications to Poker
Stat 35b: Introduction to Probability with Applications to Poker
Stat 35b: Introduction to Probability with Applications to Poker
Stat 35b: Introduction to Probability with Applications to Poker
Stat 35b: Introduction to Probability with Applications to Poker
Stat 35b: Introduction to Probability with Applications to Poker
Stat 35b: Introduction to Probability with Applications to Poker
HOW TO PLAY POKER.
Presentation transcript:

Expected value (µ) = ∑ y P(y) Sample mean (X) = ∑X i / n Sample standard deviation = √[∑(X i - X) 2 / (n-1)] iid: independent and identically distributed. Suppose X 1, X 2, etc. are iid with expected value µ and sd , LAW OF LARGE NUMBERS: X ---> µ. CENTRAL LIMIT THEOREM: (X - µ) ÷ (  /√n) ---> Standard Normal.

95% between and 1.96

Truth: -49 to 51, exp. value = 1.0

Estimated as X +/  /√n =.95 +/- 0.28

* Poker has high standard deviation. Important to keep track of results. * Don’t just track ∑X i. Track X +/  /√n. Make sure it’s converging to something positive.

Phil Helmuth, “Play Poker Like the Pros”, Collins, strategy for beginners: AA, KK, QQ, or AK. P(getting one of these hands)? 3(4/52)(3/51) + 2/13(4/51) = 1.36% % = 2.56% = 1 in 39. Say you play $100 NL, table of 9, blinds 2/3, for 39 x 9 = 351 hands. Pay 5 x 39 = 195 dollars in blinds. Expect to play 9 hands. Say P(win preflop) ~ 50%, and in those hands you win ~ $8. Other 50%, always vs. 1 opponent, 60% to win $100. So, expected winnings after 351 hands = -$ x 50% x $8 + 9 x 50% x 60% x $ x 50% x 40% x -$100 = -$69. That is, you lose $69 every 351 hands on average = $20 per 100 hands.

“Unbeatable Texas Holdem Strategy”: all in with AK-AT or pair. P(getting such a hand) = 4 x [16/(52 choose 2)] + 13 x [6/(52 chs 2)] = 4 x 1.2% + 13 x 0.45% = 10.7%. Play 100 times. Expect ~ 11 hands. Pay ~11 blinds = $55. Say you’re called by 88-AA, and AK, for $100 on avg. P(player 1 has one of these) = 7 x 0.45% + 1.2% = 4.4%. P(someone of 8 has one of these) = 1 - (95.6%) 8 = 30%. So, you win pre-flop 70% of the time. (Say $10 on avg.) = 11 x 70% x $10 = $77 profit. Other 30%, you’re on avg about a underdog, so you win 11 x 30% x 35% x $100 = $ lose 11 x 30% x 65% x $100 = $ Total: exp. to win $77 + $ $55 - $ = -$77/ 100 hands.

11/4/05, Travel Channel, World Poker Tour, $1 million Bay 101 Shooting Star. 4 players left, blinds $20,000 / $40,000, with $5,000 antes. Avg stack = $1.1 mil. 1st to act: Danny Nguyen, A  7 . All in for $545,000. Next to act: Shandor Szentkuti, A  K . Call. Others (Gus Hansen & Jay Martens) fold.(66% - 29%). Flop: 5 K 5 .(tv 99.5%; cardplayer.com: 99.4% - 0.6%). P(tie) = P(55 or A5 or 5A) = (2/45 x 1/44) + (2/45 x 2/44) + (2/45 x 2/44) = 0.505%. 1 in 198. P(Nguyen wins) = P(77) = 3/45 x 2/44 = 0.30%. 1 in 330. [Note: tv said “odds of running 7’s on the turn and river are 274:1.” Given Hansen/Martens’ cards, 3/41 x 2/40 = 1 in 273.3). ] * Szentkuti was eliminated next hand, in 4th place. Nguyen went on to win it all. Turn: 7 . River: 7  !

11/4/05, Travel Channel, World Poker Tour, $1 million Bay 101 Shooting Star. 3 players left, blinds $20,000 / $40,000, with $5,000 antes. Avg stack = $1.4 mil. (pot = $75,000) 1st to act: Gus Hansen, K  9 . Raises to $110,000. (pot = $185,000) Small blind: Dr. Jay Martens, A  Q. Re-raises to $310,000. (pot = $475,000) Big blind: Danny Nguyen, 7  3 . Folds. Hansen calls. (tv: 63%-36%.) (pot = $675,000) Flop: 4  9 6 .(tv: 77%-23%; cardplayer.com: 77.9%-22.1%) P(no A nor Q on next 2 cards) = 37/43 x 36/42 = 73.8% P(AK or A9 or QK or Q9) = ( ) ÷ (43 choose 2) = 3.3% So P(Hansen wins) = 73.8% + 3.3% = 77.1%. P(Martens wins) = 22.9%.

1st to act: Gus Hansen, K  9 . Raises to $110,000. (pot = $185,000) Small blind: Dr. Jay Martens, A  Q. Re-raises to $310,000. (pot = $475,000) Hansen calls. (pot = $675,000) Flop: 4  9 6 . P(Hansen wins) = 77.1%. P(Martens wins) = 22.9%. Martens checks. Hansen all-in for $800,000 more. (pot = $1,475,000) Martens calls. (pot = $2,275,000) Vince Van Patten: “The doctor making the wrong move at this point. He still can get lucky of course.” Was it the wrong move? His prob. of winning should be ≥ $800,000 ÷ $2,275,000 = 35.2%. Here it was 22.9%. So, if Martens knew what cards Hansen had, he’d be making the wrong move. But given all the possibilities, it seems very reasonable to assume he had a 35.2% chance to win. (Harrington: 10%!) * Turn: A  ! River: 2 . * Hansen was eliminated 2 hands later, in 3rd place. Martens then lost to Nguyen.  