Comparisons CH 4 SCIAMACHY / GROUND-BASED FTIR B. Dils, BIRA + HYMN partners Corinne Vigouroux, BIRA, HYMN progress meeting, 7-8 April 2008.

Slides:



Advertisements
Similar presentations
SCILOV-10 Validation of SCIAMACHY nadir operational NO 2 product F. Azam, A. Richter, M. Weber, H. Bovensmann and J. P. Burrows ESA/ESRIN, Frascati, Italy.
Advertisements

Hydrogen, Methane and Nitrous oxide: Trend variability, budgets and interactions with the biosphere GOCE-CT HYMN September 2007.
Simultaneous profile measurements of BrO, OClO and NO 2 in the polar vortex Chris Sioris and Kelly Chance Smithsonian Astrophysical Observatory.
SCILOV-10 Validation of SCIAMACHY limb operational BrO product F. Azam, K. Weigel, A. Rozanov, M. Weber, H. Bovensmann and J. P. Burrows ESA/ESRIN, Frascati,
DIRECT TROPOSPHERIC OZONE RETRIEVALS FROM SATELLITE ULTRAVIOLET RADIANCES Alexander D. Frolov, University of Maryland Robert D. Hudson, University of.
M. De Mazière et al., HYMN, May 2007 Status of WP4: FTIR measurements M. De Mazière (BIRA-IASB) K. Petersen, T. Warneke, J. Notholt (U. Bremen)
Tangent height offsets estimated by correlation analysis of ground-based data with O 3 limb profiles J.A.E. van Gijsel Y.J. Meijer.
Forschungszentrum Karlsruhe in der Helmholtz-Gemeinschaft NDACC H2O workshop, Bern, July 2006 Water vapour profiles by ground-based FTIR Spectroscopy:
Inter-comparison of retrieved CO 2 from TCCON, combining TCCON and TES to the overpass flight data Le Kuai 1, John Worden 1, Susan Kulawik 1, Edward Olsen.
Task Group 3 AT2 workshop, 30 Sept – 1 Oct 2008 Task Group 3 Achievements and Prospects Ankie Piters, KNMI.
Improvement and validation of OMI NO 2 observations over complex terrain A contribution to ACCENT-TROPOSAT-2, Task Group 3 Yipin Zhou, Dominik Brunner,
Institut für Umweltphysik/Fernerkundung Physik/Elektrotechnik Fachbereich 1 Retrieval of SCIAMACHY limb measurements: First Results A. Rozanov, V. Rozanov,
Xiong Liu Harvard-Smithsonian Center for Astrophysics December 20, 2004 Direct Tropospheric Ozone Retrieval from GOME.
The Averaging Kernel of CO2 Column Measurements by the Orbiting Carbon Observatory (OCO), Its Use in Inverse Modeling, and Comparisons to AIRS, SCIAMACHY,
Xiong Liu Harvard-Smithsonian Center for Astrophysics Kelly Chance, Christopher Sioris, Robert Spurr, Thomas Kurosu, Randall Martin,
Accent-troposat 2 final workshop, 30 Sept Oct. 2008, FMI Helsinki, Finland Atmospheric bromine monoxide retrieval from space and ground-based UV-visible.
Recent developments in near- infrared retrievals of CH 4 and CO Christian Frankenberg, Annemieke Gloudemans, Jos de Laat, Hans Schrijver.
New insights into CO 2 fluxes from space? Michael Barkley, Rhian Evans, Alan Hewitt, Hartmut Boesch, Gennaro Cappelutti and Paul Monks EOS Group, University.
Hydrogen, Methane and Nitrous oxide: Trend variability, budgets and interactions with the biosphere HYMN 6 month progress meeting K. Petersen, M. De Mazière.
VALIDATION OF SCIAMACHY CH 4 SCIENTIFIC PRODUCTS USING GROUND-BASED FTIR MEASUREMENTS B. Dils, M. De Mazière, C. Vigouroux, C. Frankenberg, M. Buchwitz,
Ground-based validation of SCIAMACHY OL 3.0 Ozone Profile Data and Estimation of Altitude Shift.
Gloudemans 1, J. de Laat 1,2, C. Dijkstra 1, H. Schrijver 1, I. Aben 1, G. vd Werf 3, M. Krol 1,4 Interannual variability of CO and its relation to long-range.
Aerosol Climate Change Initiative Stratospheric activities around the Aerosol_CCI project C. Bingen, C. Robert, A. Bourrassa & Aerosol_CCI Team F. Vanhellemont,
Page 1 Sciamachy Validation Workshop – Bremen December 2004 Contribution to the validation of SCIAMACHY scientific data products for CO, CH 4, CO.
IRWG Report to the NDACC SC Jim Hannigan Martine De Maziere.
Introduction A new methodology is developed for integrating complementary ground-based data sources to provide consistent ozone vertical distribution time.
ICDC7, Boulder, September 2005 CH 4 TOTAL COLUMNS FROM SCIAMACHY – COMPARISON WITH ATMOSPHERIC MODELS P. Bergamaschi 1, C. Frankenberg 2, J.F. Meirink.
NORS project (Network Of ground-based Remote Sensing Observation ) Contribution of the CNRS LIDAR team  Maud Pastel, Sophie Godin-Beekmann Latmos CNRS.
National Aeronautics and Space Administration Jet Propulsion Laboratory California Institute of Technology Pasadena, California 1 Atmospheric Infrared.
Institut für Umweltphysik (iup) AMFIC 1 st Progress Meeting, May 2008, Aristotle University, Thessaloniki, Greece Carbon monoxide columns and methane.
Page 1 Envisat Validation Workshop, ACVT-GBMCD, SCIAMACHY scient. prod. 12/12/2002 Envisat Validation Workshop Atmospheric Chemistry Validation Team Ground-Based.
A. Bracher, L. N. Lamsal, M. Weber, J. P. Burrows University of Bremen, FB 1, Institute of Environmental Physics, P O Box , D Bremen, Germany.
Institute of Environmental Physics and Remote Sensing IUP/IFE-UB Physics/Electrical Engineering Department 1 Measurements.
Validating the GHG production chain at multiple levels Julia Marshall (MPI-BGC), Richard Engelen (ECMWF), Cyril Crevoisier (LMD), Peter Bergamaschi (JRC),
SCIAMACHY long-term validation M. Weber, S. Mieruch, A. Rozanov, C. von Savigny, W. Chehade, R. Bauer, and H. Bovensmann Institut für Umweltphysik, Universität.
SCIAMACHY Validation Workshop, 6-8 Dec 2004, Bremen CO, CH4, CO2, and N2O columns retrieved from SCIAMACHY by WFM-DOAS: Algorithm, released data products,
WP 3 Satellite observations. SCIAMACHY retrieval Month 15: Initial error report Month 18: First dataset for CH4 and CO Incorporation of ECMWF p/T profiles.
WP2. Volatile Organic compounds and CFC- substitutes in the troposphere from FTIR spectra Task 2.1: Retrievals of CH 3 OH and CH 3 Cl Task 2.2: Re-analysis.
Page 1 Envisat Validation Workshop, ACVT-GBMCD, MIPAS O 3 12/12/2002 Envisat Validation Workshop Atmospheric Chemistry Validation Team Ground-Based Measurements.
Work package 4 OBSERVATIONS FROM GROUND NETWORKS.
Institut für Umweltphysik (iup) AMFIC Kick-off Meeting, 26 October 2007, KNMI, The Netherlands Carbon monoxide columns and methane column- averaged mixing.
CH 4 retrievals : status of Ulg work HYMN Workshop, Totnes, October 2007 Liège team Ph. Demoulin, P. Duchatelet, E. Mahieu, Ch. Servais, S. Trabelsi,
Retrieval of Methane Distributions from IASI
Validation of SCIAMACHY total ozone: ESA/DLR V5(W) and IUP WFDOAS V2(W) M. Weber, S. Dikty, J. P.Burrows, M. Coldewey-Egbers (1), V. E. Fioletov (2), S.
Central EuropeUS East CoastJapan Global satellite observations of the column-averaged dry-air mixing ratio (mole fraction) of CO 2, denoted XCO 2, has.
IASI CH 4 Operational Retrieval Feasibility - Optimal Estimation Method Task 1+3: Updates Richard Siddans, Jane Hurley PM2, webex 10 October 2014.
Evaluation of OMI total column ozone with four different algorithms SAO OE, NASA TOMS, KNMI OE/DOAS Juseon Bak 1, Jae H. Kim 1, Xiong Liu 2 1 Pusan National.
EVOLUTION OF SCIAMACHY CH 4 SCIENTIFIC PRODUCT QUALITY & INITIAL LOOK AT THE ‘HYMN FTIR DATASET’ B. Dils, M. De Mazière, C. Vigouroux, R. Sussmann, F.
Research Center KarlsruheRalf Sussmann IMK-IFU Garmisch-PartenkirchenHYMN retrieval strategy zugbreharkir iza reu PSSPSS PSSPSS PSSPSS PSSSPSSS PSSPSS.
AMFIC Progress Meeting, Barcelona, 24 June Space-nadir observations of formaldehyde, glyoxal and SO 2 columns with SCIAMACHY and GOME-2. Isabelle.
Research Center KarlsruheRalf Sussmann et al. IMK-IFU Garmisch-PartenkirchenHarmonized global SCIA XCH4 validation 1 Harmonized 2003 & 2004 XCH4 data from.
Kelly Chance Harvard-Smithsonian Center for Astrophysics Xiong Liu, Christopher Sioris, Robert Spurr, Thomas Kurosu, Randall Martin,
Henk Eskes, ERS-ENVISAT symposium 2004 Retrieval, validation and assimilation of SCIAMACHY ozone columns Henk Eskes, Ronald van der A, Ellen Brinksma,
1 Xiong Liu Harvard-Smithsonian Center for Astrophysics K.V. Chance, C.E. Sioris, R.J.D. Spurr, T.P. Kurosu, R.V. Martin, M.J. Newchurch,
HYMN 2nd annual meeting FTIR Introduction/Overview A.K. Petersen, J. Notholt, T. Warneke Hydrogen, Methane and Nitrous oxide: Trend variability, budgets.
HYMN FTIR-WG meeting J. Notholt, M. De Mazière, K. Petersen Hydrogen, Methane and Nitrous oxide: Trend variability, budgets and interactions with the biosphere.
Progress on the unification of the SO 2 retrieval for GOME-2A/B and OMI C. Hörmann, S. Beirle, K. Mies and T. Wagner First German S5P Verification Meeting.
SADDU1/13 SCIAVALIG status report: Product website & Quality assessment status Annelise du Piesanie, Ankie Piters.
Abstract We intercompare Stratospheric Column Ozone (SCO) and ozone profiles retrieved from GOME data with ozonesonde and SAGE-II data for GOME.
Upgrade from SGP V5.02 to V6.00: Conclusions from delta-validation of Diagnostic Data Set D. Hubert, A. Keppens, J. Granville, F. Hendrick, J.-C. Lambert.
WP4: Observations from ground networks. Work package 4 OBSERVATIONS FROM GROUND NETWORKS.
Preliminary results of the validation of IASI CO and CH4 retrievals HYMN Final Meeting October 2009, Brussels, Belgium.
Definition of SCIAMACHY Diagnostic Data Set
Intercomparison of SCIAMACHY NO2, the Chimère air-quality model and
SCIAMACHY QWG PM6, Sept Upgrade from SGP V5.02 to V6 .01: Ground-based (delta) validation conclusions A. Keppens, D. Hubert, J. Granville,
Monika Kopacz, Daniel Jacob, Jenny Fisher, Meghan Purdy
Corinne Vigouroux M. De Mazière, Q. Errera (BIRA-IASB); E. Mahieu, B
Intercomparison of SCIAMACHY NO2, the Chimère air-quality model and
CONSISTENCY among MOPITT, SCIA, AIRS and TES measurements of CO using the GEOS-Chem model as a comparison.
Monitoring and assimilation of SCIAMACHY data at ECMWF
Presentation transcript:

Comparisons CH 4 SCIAMACHY / GROUND-BASED FTIR B. Dils, BIRA + HYMN partners Corinne Vigouroux, BIRA, HYMN progress meeting, 7-8 April 2008.

The FTIR stations for HYMN Stations (UFTIR) Ny-Alesund Kiruna Harestua Bremen (CH4) Zugspitze Jungfraujoch Izana Paramaribo St-Denis Collocation grid with SCIAMACHY data: Large grid = Lat ± 2.5° Lon ± 10° Small grid = Lat ± 2.5° Lon ± 5°

Previous work on FTIR / SCIA comparisons  Dils et al., ACP, 6, , 2006  European stations (as UFTIR, but different retrieval strategies !) + Egbert, Toronto, Wollongong, Lauder and Arrival Heights  3 Algorithms for SCIA data: 1) IMAP-DOAS (Frankenberg et al.) (only 2003)2) WFM-DOAS (Buchwitz et al.) 3) IMLM (Gloudemans et al.)  Scarce data in daily coincidence → Compare the SCIA data with a 3rd order polynomial fit through the FTIR data; therefore daily variability cannot be captured. → Large scatters (except IMAP-D: 1.1%, but worst correlation coefficient: 0.7)

 Dils et al., Proceedings of ACVE-3, Dec  UFTIR stations only. Homogenize strategy: called this data set “UFTIR data”  WFM-DOAS (improved version)   Methodology: still polynomial fit (to compare the improvement with respect to previous version WFM-DOAS) → Improvement of the comparisons compared to old data sets WFM-D & UFTIR. Previous work on FTIR / SCIA comparisons

HYMN project  Data sets & methodology  UFTIR stations + Paramaribo and Reunion, using a common strategy ! → UFTIR or improved ?  IMAP-DOAS (new version)  2004 (+ ???)  Methodology : for the year 2004 & with new IMAP algorithm, more SCIA data are available → polynomial fit through FTIR data or direct comparisons ?

HYMN project  Today, we show :  Comparisons new IMAP-D vs WFM-D used lately in Dils et al., ACVE_3: → same UFTIR data set & same methodology (polynomial fit)  New IMAP-D, same UFTIR data, but considering direct comparisons of daily mean coincidences  Direct comparisons using new HYMN FTIR data set when available.

 Improvement in scatter and correlation coefficient   scat includes natural variability toward polynomial is close to the FTIR scatter = 0.85% (2004) CH 4 WFM-DIMAP-D BiasWeighted mean [(SCIA-FTIR)/FTIR] ± 3*std/sqrt(N) ± 0.05%-1.23 ± 0.02 %  scat Weighted std of SCIA around the polynomial FTIR fit, shifted with the bias 1.40%0.91% RCorrelation coefficient between weighted monthly means NNb coincidences IMAP-DOAS & WFM-DOAS vs FTIR polynomial fit (UFTIR data)

IMAP-D & WFM-D: bias as a function of latitude IMAP-DOAS bias less pronounced and more homogeneous than for WFM-DOAS

Examples of CH 4 monthly time series in 2004

Polynomial fit or direct comparisons ? UFTIR data Polynomial fit UFTIR data Direct comparisons BiasScatterBias (N)Scatter Ny Alesund (10)1.11 Kiruna (37)1.07 Harestua (12)1.17 Bremen (21)1.34 Zugspitze (45)1.42 Jungfraujoch (62)1.11 Izaña (53)0.77 Paramaribo St-Denis Both techniques are in agreement: to be done: check in detail if we see daily effects.

HYMN data set UFTIR Daily means HYMN data setChanges HYMN vs UFTIR Bias (N)ScatterBias (N)Scatter Ny Alesund-0.17 (10) (25)1.10Spectroscopy + new a priori profile Kiruna-0.21 (37)1.07 Harestua-1.16 (12)1.17 Bremen-0.92 (21) (10)1.06Spectroscopy + new a priori profile Zugspitze-1.89 (45) (47)1.30??? Jungfraujoch-0.82 (62) (62)1.29Spectroscopy Izaña-1.39 (53)0.77 Paramaribo+3.14 (20)1.21Spectroscopy + new a priori profile StDenis+1.56 (25)1.46Spectroscopy → Homogenization problem ?

 Today, we show :  Improvement of new IMAP-DOAS data  Methodologies in agreement. Final choice to be decided.  It seems that there is some problems of homogeneity with new HYMN FTIR data set: discussion in progress.  Questions for FTIR (next meeting May):  when should we deliver data for other years than 2004 ?  N2O, CO ?  ECMWF / NCEP ? (at St-Denis: ~ 1% bias on total columns, ~ 0.2% on tropospheric columns) Conclusions