Tth study Lepton ID with BDT 2015/02/27 Yuji Sudo Kyushu University 1.

Slides:



Advertisements
Similar presentations
Freiburg Seminar, Sept Sascha Caron Finding the Higgs or something else ideas to improve the discovery ideas to improve the discovery potential at.
Advertisements

Lauri A. Wendland: Hadronic tau jet reconstruction with particle flow algorithm at CMS, cHarged08, Hadronic tau jet reconstruction with particle.
CMS reconstruction and identification Part II CMS reconstruction and identification Part II A. Nikitenko Tau jetsTau jets Missing E T (briefly)Missing.
Search for Top Flavor Changing Neutral Current Decay t → qZ Ingyin Zaw DOE Review August 21, 2006.
First look of ME study on ttH(  bb) channel Univ. of Tokyo Y.Kataoka
14 Sept 2004 D.Dedovich Tau041 Measurement of Tau hadronic branching ratios in DELPHI experiment at LEP Dima Dedovich (Dubna) DELPHI Collaboration E.Phys.J.
22/5/2011 Particle-ID and Tracking performance in CLIC_ILD1/27 CLIC_ILD particle identification and tracking performance J. Nardulli This talk in 2 parts:
Particle Identification in the NA48 Experiment Using Neural Networks L. Litov University of Sofia.
Introduction to Single-Top Single-Top Cross Section Measurements at ATLAS Patrick Ryan (Michigan State University) The measurement.
Higgs Detection Sensitivity from GGF H  WW Hai-Jun Yang University of Michigan, Ann Arbor ATLAS Higgs Meeting October 3, 2008.
1 Andrea Bangert, ATLAS SCT Meeting, Monte Carlo Studies Of Top Quark Pair Production Andrea Bangert, Max Planck Institute of Physics, CSC T6.
Single-Top Cross Section Measurements at ATLAS Patrick Ryan (Michigan State University) Introduction to Single-Top The measurement.
Michele Faucci Giannelli, Mike Green, Veronique Boisvert, Fabrizio Salvatore, Tao Wu LCWS 08, Chicago, 18 November 2008 Sensitivity to the Higgs self-coupling.
Tau Jet Identification in Charged Higgs Search Monoranjan Guchait TIFR, Mumbai India-CMS collaboration meeting th March,2009 University of Delhi.
1 ZH Analysis Yambazi Banda, Tomas Lastovicka Oxford SiD Collaboration Meeting
Associated top Higgs search: with ttH (H  bb) Chris Collins-Tooth, 17 June 2008.
Top-partner mass reconstruction by using jets Michihisa Takeuchi ( KEK,YITP ) In collaboration with Mihoko M. Nojiri (KEK), Naotoshi Okamura (KEK)
Sung-Won Lee 1 Study of Hadronic W Decays in the Jets + MET Final LHC Kittikul Kovitanggoon * & Sung-Won Lee Texas Tech University Michael Weinberger.
Z AND W PHYSICS AT CEPC Haijun Yang, Hengne Li, Qiang Li, Jun Guo, Manqi Ruan, Yusheng Wu, Zhijun Liang 1.
Summary of HIG result and cross-checks. The results in the different channels are fairly close to the SM Higgs predictions except the μ ± μ ± final.
W+jets and Z+jets studies at CMS Christopher S. Rogan, California Institute of Technology - HCP Evian-les-Bains Analysis Strategy Analysis Overview:
August 30, 2006 CAT physics meeting Calibration of b-tagging at Tevatron 1. A Secondary Vertex Tagger 2. Primary and secondary vertex reconstruction 3.
Commissioning Studies Top Physics Group M. Cobal – University of Udine ATLAS Week, Prague, Sep 2003.
Akimasa Ishikawa (Tohoku University)
LHC France 2013, 3 rd April ATLAS results on inclusive top quark pair production cross section in dilepton channel Frédéric Derue, LPNHE Paris Rencontres.
Possibility of tan  measurement with in CMS Majid Hashemi CERN, CMS IPM,Tehran,Iran QCD and Hadronic Interactions, March 2005, La Thuile, Italy.
1 c. mills (Harvard U.) 20 September, 2010 W and Z Physics at ATLAS Corrinne Mills Harvard DOE Site Visit 20 September 2010.
Measurement of the branching ratios for Standard Model Higgs decays into muon pairs and into Z boson pairs at 1.4 TeV CLIC Gordana Milutinovic-Dumbelovic,
LCWS14, Belgrade, October M. Pandurović, H→WW at 350 GeV and 1.4 TeV CLIC Measurement of H→WW* in HZ at 350 GeV and WW fusion at 1.4 TeV CLIC.
Taikan Suehara et al., TILC09 in Tsukuba, 2009/04/18 page 1 Tau and SUSY study in ILD Taikan Suehara ICEPP, The Univ. of Tokyo Jenny List, Daniela Kaefer.
B-Tagging Algorithms for CMS Physics
1 Silke Duensing DØ Analysis Status NIKHEF Annual Scientific Meeting Analysing first D0 data  Real Data with:  Jets  Missing Et  Electrons 
FIMCMS, 26 May, 2008 S. Lehti HIP Charged Higgs Project Preparative Analysis for Background Measurements with Data R.Kinnunen, M. Kortelainen, S. Lehti,
1 Top and Tau Measurements Tim Barklow (SLAC) Oct 02, 2009.
CALOR April Algorithms for the DØ Calorimeter Sophie Trincaz-Duvoid LPNHE – PARIS VI for the DØ collaboration  Calorimeter short description.
By Henry Brown Henry Brown, LHCb, IOP 10/04/13 1.
Search for High-Mass Resonances in e + e - Jia Liu Madelyne Greene, Lana Muniz, Jane Nachtman Goal for the summer Searching for new particle Z’ --- a massive.
SEARCH FOR AN INVISIBLE HIGGS IN tth EVENTS T.L.Cheng, G.Kilvington, R.Goncalo Motivation The search for the Higgs boson is a window on physics beyond.
Susan Burke DØ/University of Arizona DPF 2006 Measurement of the top pair production cross section at DØ using dilepton and lepton + track events Susan.
1 Measurement of the Mass of the Top Quark in Dilepton Channels at DØ Jeff Temple University of Arizona for the DØ collaboration DPF 2006.
A search for the ZZ signal in the 3 lepton channel Azeddine Kasmi Robert Kehoe Southern Methodist University Thanks to: H. Ma, M. Aharrouche.
Summary of Commissioning Studies Top Physics Group M. Cobal, University of Udine Top Working Group, CERN October 29 th, 2003.
Régis Lefèvre (LPC Clermont-Ferrand - France)ATLAS Physics Workshop - Lund - September 2001 In situ jet energy calibration General considerations The different.
Top Higgs Yukawa Coupling Analysis – Status Report Hajrah Tabassam Quai-i-Azam University, Islamabad ON BEHALF OF: R. Yonamine, T. Tanabe, K. Fujii, KEK.
А. Тумасян научный руководитель А. Сирунян. Jet algorithms development perspectives within HCAL upgrade.
Search for the Standard Model Higgs in  and  lepton final states P. Grannis, ICHEP 2012 for the DØ Collaboration Tevatron, pp √s = 1.96 TeV -
Trilepton+top signal from chargino-neutralino decays of MSSM charged Higgs bosons 17 June 2004, 9 th Nordic LHC Physics Workshop, Copenhagen Christian.
Background Shape Study for the ttH, H  bb Channel Catrin Bernius First year talk 15th June 2007 Background Shape Study for the ttH 0, H 0  bb Channel.
Mark OwenManchester Christmas Meeting Jan Search for h ->  with Muons at D  Mark Owen Manchester HEP Group Meeting January 2006 Outline: –Introduction.
Z  BF using  hadronic events Silke Duensing Aug 8th, 2003.
 reconstruction and identification in CMS A.Nikitenko, Imperial College. LHC Days in Split 1.
Search for Standard Model Higgs in ZH  l + l  bb channel at DØ Shaohua Fu Fermilab For the DØ Collaboration DPF 2006, Oct. 29 – Nov. 3 Honolulu, Hawaii.
Converted photon and π 0 discrimination based on H    analysis.
XLIX International Winter Meeting on Nuclear Physics January 2011 Bormio, Italy G. Cattani, on behalf of the ATLAS Collaboration Measurement of.
ATLAS results on inclusive top quark pair
The Top Quark at CDF Production & Decay Properties
Erik Devetak Oxford University 18/09/2008
Top Tagging at CLIC 1.4TeV Using Jet Substructure
Venkat Kaushik, Jae Yu University of Texas at Arlington
Philippe Doublet, LAL Roman Pöschl & François Richard, LAL
陶军全 中科院高能所 Junquan Tao (IHEP/CAS, Beijing)
NIKHEF / Universiteit van Amsterdam
Overview of CMS H→ analysis and the IHEP/IPNL contributions
Reconstruction of TauTau events
Electron Identification Based on Boosted Decision Trees
Top Quark Production at the Large Hadron Collider
Jessica Leonard Oct. 23, 2006 Physics 835
tth, (h→bb) with EventViews
Status of CEPC HCAL Optimization Study in Simulation LIU Bing On behalf the CEPC Calorimeter working group.
Northern Illinois University / NICADD
Presentation transcript:

tth study Lepton ID with BDT 2015/02/27 Yuji Sudo Kyushu University 1

Motivation 2 cut based lepton ID is useful to find isolated lepton with small systematic uncertainty but it is important to increase signal acceptance for tth study. MVA lepton identification will be improve lepton ID efficiency and miss ID fraction.  signal acceptance will be improved. -- issues related to MVA lepton ID method are - specified lepton ID method to tth study - more complicate lepton ID method than cut-based lepton selection

training and test sample signal : e, mu, tau(e), tau(mu), tau(1-prong), tau(3-prong) training and test samples: tth  2l2nbbbb background: mu, tau(e), tau(mu), tau(1-prong), tau(3-prong), b jet, lf jet training and test samples: ttZ for light flavor jet : tth  2l2nbbbb for the other background PFOs which can be traced to MC information are used to make samples. emutau(e)tau(mu)tau 1-prong tau 3-prong bjetlf jet e-xxxxxxx mu-xxxxxx tau(e)-xxxxx tau(mu)-xxxx tau(1-prong)-xxx tau(3-prong)-xx Signals Backgrounds BDTs: 3

Input variables Input variables are chosen from the following parameters hadOvEM: E hcal /E ecal calEovE: (E hcal +E ecal )/Epfo coneE2woSeed: E cone2 without seed E PFO isoCutOld: 6(E PFO -15) 2 – (coneE2woSeed) 2 pfoR0 : sqrt(trkD0 2 +trkZ0 2 ) coneE1OvConeE2: E cone1 /E cone2 coneMass1: reconstructed mass with PFOs in cone1 coneMass3: reconstructed mass with PFOs in cone3 clusterShape0: χ2 of fit clusterShape1: maximum deposited energy (GeV) clusterShape2: shower Max (mm) clusterShape3: transverse absorption length(mm) clusterShape5: shower Max/ Expected shower Max clusterShape16: xl20 (mm) yokuE: deposited energy in the yoku pfoe: PFO energy pt: Pt of PFO cone1E maxTrkEInCone13: Maximum energy of a PFO with track between cone1 and cone2 nNeutralCone1: Number of PFOs with no track in cone1 eNeutralCone1: Energy sum of PFOs with no track in cone1 (*1) cone1: cosθ>0.99 cone2: cosθ>0.98 cone3: cosθ>0.93 (*2)cluster shape variables - choose the highest energy cluster - electron shower shaped is used to fit (*3) transverse absorption length : distance btw shower center and location where cluster energy goes down to 1/e (*4) xl20:length to the positon where the deposited energy reaches 80 % of total energy on shower axis 80% shower axis (mm) (*4) deposited energy 4

input variables e-mu 1 signal:e, background:mu HCAL energy/ ECAL energy Calorimeter energy/ PFO energy distance of reconstructed vertex (mm) cone1: cosθ>0.99 cone2: cosθ>0.98 cone3: cosθ>0.93 Cone Mass 1 (GeV) χ2 of fit cluster shape variables - choose the highest energy cluster - electron shower shape is used to fit maximum deposited energy (GeV) 5

input variables e-mu 2 signal : e, background : mu cone1: cosθ>0.99 cone2: cosθ>0.98 cone3: cosθ>0.93 cluster shape variables choose the highest energy cluster shower Max (mm) transverse absorption length(mm) transverse absorption length : distance btw shower center and location where cluster energy goes down to 1/e shower Max/ Exp. shower Max xl20 (mm) energy deposit in yoku (GeV) 6

BDT Output, signal: electron background: muonbackground: tau (μ)background: tau(e) background: tau(h)background: b jetbackground: lf jet pre-cut : PFO energy > 2 GeV, PFO with track additional pre-cut for electron or muon: PFO energy > 5 GeV 7

BDT Output, signal: muon background: muonbackground: tau (μ)background: tau(e) background: tau(h)background: b jetbackground: lf jet pre-cut : PFO energy > 2 GeV, PFO with track additional pre-cut for electron or muon: PFO energy > 10 GeV 8

BDT Output, signal: tau(e) background: muonbackground: tau (μ)background: tau(e) background: tau(h)background: b jetbackground: lf jet pre-cut : PFO energy > 2 GeV, PFO with track 9

BDT Output, signal: tau(m) background: muonbackground: tau (μ)background: tau(e) background: tau(h)background: b jetbackground: lf jet pre-cut : PFO energy > 2 GeV, PFO with track 10

BDT Output, signal: tau 1-prong (top), tau 3-prong (bottom) background: lf jetbackground: b jet background: lf jet pre-cut : PFO energy > 2 GeV, PFO with track 11

tth 2l2n (%) elecmuontauetaumtauh1tauh3bjetljet elec 92 ( ) 0 (0) (28.82) 0 (0) 0.42 (0.31) 0 (0.06) 0 (0) N/A muon 0 (0) (92.14) 0 (0) (18.19) 0.03 (0.01) 0 (0) 0 (0) N/A taue 0.94 (2.24) 0 (0) (18.76) 0 (0) 0.33 (0.42) 0 (0) 0.04 (0.02) N/A taum 0 (0) 1.34 (2.66) 0 (0) (35.07) 0.11 (0.09) 0 (0) 0.04 (0.03) N/A tauh (3.56) 0.06 (0.53) 0.71 (15.4) 0.04 (12.46) (46.21) 0 (0) 0.04 (0.06) N/A tauh3 0 (0) 0 (0.01) 0.04 (0.08) 0 (0.04) 0 (0) (38.74) 0.01 (0.04) N/A nonlep 6.76 (9.09) 3.47 (4.65) (36.91) (34.22) (52.92) 50.7 (61.18) (99.83) N/A Selection particles Lepton ID efficiency with TMVA BDT (cut base) lepton selection 12 * in this table, 0 means less than 0.01%

(%) elecmuontauetaumtauh1tauh3bjetljet elec 92 ( ) 0 (0) (28.82) 0 (0) 0.42 (0.31) 0 (0.06) 0 (0) N/A muon 0 (0) (92.14) 0 (0) (18.19) 0.03 (0.01) 0 (0) 0 (0) N/A taue 0.94 (2.24) 0 (0) (18.76) 0 (0) 0.33 (0.42) 0 (0) 0.04 (0.02) N/A taum 0 (0) 1.34 (2.66) 0 (0) (35.07) 0.11 (0.09) 0 (0) 0.04 (0.03) N/A tauh (3.56) 0.06 (0.53) 0.71 (15.4) 0.04 (12.46) (46.21) 0 (0) 0.04 (0.06) N/A tauh3 0 (0) 0 (0.01) 0.04 (0.08) 0 (0.04) 0 (0) (38.74) 0.01 (0.04) N/A nonlep 6.76 (9.09) 3.47 (4.65) (36.91) (34.22) (52.92) 50.7 (61.18) (99.83) N/A tth 2l2n Selection particles Lepton ID efficiency with TMVA BDT (cut base) lepton selection 13 * in this table, 0 means less than 0.01%

(%) elecmuontauetaumtauh1tauh3bjetljet elec 92 ( ) 0 (0) (28.82) 0 (0) 0.42 (0.31) 0 (0.06) 0 (0) N/A muon 0 (0) (92.14) 0 (0) (18.19) 0.03 (0.01) 0 (0) 0 (0) N/A taue 0.94 (2.24) 0 (0) (18.76) 0 (0) 0.33 (0.42) 0 (0) 0.04 (0.02) N/A taum 0 (0) 1.34 (2.66) 0 (0) (35.07) 0.11 (0.09) 0 (0) 0.04 (0.03) N/A tauh (3.56) 0.06 (0.53) 0.71 (15.4) 0.04 (12.46) (46.21) 0 (0) 0.04 (0.06) N/A tauh3 0 (0) 0 (0.01) 0.04 (0.08) 0 (0.04) 0 (0) (38.74) 0.01 (0.04) N/A nonlep 6.76 (9.09) 3.47 (4.65) (36.91) (34.22) (52.92) 50.7 (61.18) (99.83) N/A tth 2l2n Selection particles Lepton ID efficiency with TMVA BDT (cut base) lepton selection 14 * in this table, 0 means less than 0.01%

(%) elecmuontauetaumtauh1tauh3bjetljet elec ( ) 0.01 (0.01) 44.3 (28.27) 0 (0) 0.15 (0.11) 0 (0.11) 0.01 (0.02) 0.01 (0.02) muon 0 (0) (92.23) 0 (0) (18.28) 0 (0) 0.11 (0) 0.01 (0) 0 (0.01) taue 1.16 (1.96) 0 (0.01) (20.01) 0 (0) 0.34 (0.23) 0 (0) 0.02 (0.02) 0 (0) taum 0 (0) 1.59 (2.93) 0 (0) (36.28) 0.15 (0.07) 0 (0) 0.02 (0.03) 0 (0) tauh (3.14) 0.05 (0.49) 0.56 (15.08) 0 (10.98) (45.37) 0 (0) 0.01 (0.02) 0.38 (0.4) tauh (0.05) 0 (0) 0 (0.08) 0 (0) 0 (0) (37.99) 0 (0.02) 0.18 (0.2) nonlep 7.5 (10.2) 3.39 (4.29) (36.62) (34.44) (54.19) (61.88) (99.86) 99.4 (99.34) ttZ Selection particles Lepton ID efficiency with TMVA BDT (cut base) lepton selection 15 * in this table, 0 means less than 0.01%

Summary1 Prepare BDT Lepton ID method Lepton ID efficiency is improved - ID efficiency is slightly increased - miss ID rate is slightly decreased I hope sensitivity of tth(h  bb) channel will be improved some issues - cluster shape values has sometimes “Nan” value.  PFOs with “Nan” input value are rejected to MVA samples - some BDT outputs have peaked distribution Is it acceptable or not? - many input variables are used 16

tth study with increased MC stat. tth, ttz, ttbb: 100k~200k events tbW(DBD samples): 10k~100k events 17

Expected # of 500fb -1 Branching ratio expected # of signals and -1 ) 18 Process σ (fb) e - e +  tth0.485 e - e +  ttZ1.974 e - e +  ttg(bb)1.058 e - e +  tbW979.8 Decay modeBranching ratio h  bb0.577 tt  bqqbqq0.457 tt  blνbqq0.438 tt  blνblν0.105 tth(tt6j, hbb)63.9tth(ttln4j,hbb)61.3 tth(ttall, hnobb)102.6ttZ987 tth(ttlνlν2b, hbb)14.6ttg(bb)529 tbW489902

tth analysis 19 interference term is negligible counting analysis with cut based event selection Use Kt clustering only for removing low Pt background lepton ID (cut base) - muon selection - electron selection - tau (leptonic decay) - tau (hadronic decay) forced 8 jets clustering & 0 isolated lepton  8jets channel forced 6 jets clustering & 1 isolated lepton  lν6jets channel forced 4 jets clustering & 2 isolated leptons  2l2ν 4jets channel In this analysis, higgs decays into two b jets require at least 4 b jets (b tagging: LCFIPlus)

Event Selection 20 * tbW shape is used 2 b tagged category’s shape.

tth  8jets 21 number of events passed all selection Iepton ID with BDT cut base lepton ID Process# of evt tth  4q+4b14.4 tth (other)0.46 ttZ7.29 ttbb2.59 tbW25.0 Process# of evt tth  4q+4b14.7 tth (other)0.44 ttZ7.35 ttbb2.71 tbW25.7

tth  ln+6jets 22 Process# of evt tth  ln+2q+4b 9.99 tth (other)0.25 ttZ5.12 ttbb1.99 tbW9.30 number of events passed all selection cut base lepton ID Iepton ID with BDT Process# of evt tth  ln+2q+4b 10.2 tth (other)0.25 ttZ5.17 ttbb2.02 tbW9.80

tth  2l2n+4b jets 23 Process# of evt tth  2l2n+4b 2.34 tth (other)0.12 ttZ1.78 ttbb1.61 tbW7.32 number of events passed all selection cut base lepton ID Iepton ID with BDT Process# of evt tth  2l2n+4b 2.48 tth (other)0.08 ttZ1.98 ttbb1.72 tbW5.49

Summary2 & Conclusions 24 Signal Acceptance after all event selection Cut-based lepton IDBDT lepton ID tth  8jets22.5 %23.0 % tth  ln+6jets16.3 %16.6 % tth  2l2n+4b16.0 %17.0 %

Backup 25

Lepton ID 26 muon selection electron selection tau (e) tau(muon) tau (1-prong) tau(3-prong)

Event Selection Jet clustering : Durham algorithm forced 8 jet clustering for tth  8jets channel “Y 87 > ” + “Y ” Isolated Lepton Definition require no(one) Isolated lepton to 8jet(lν+6jet) channel 27 forced 6 jet clustering for tth  lν+6jets channel “Y 65 > ” + “Y ” (old definition)

Jet pairing, χ2 Cut 28 Reference values are made from reconstructed jets which are matched with MC information - Mtop = 171.5GeV - sigma Mtop = 16.8 GeV - MW = 80. 5GeV - sigma MW = 9.9 GeV - angle(jj) = sigma angle(jj) = 0.277

higgs and top pairing, χ2 Cut Angle information between higgs candidate jets is effective to choose correct jet pair. A W mass is reconstructed with Isolated lepton and Missing P try all combination and choose a pair with minimum χ 2 value 29 Reference values are made from reconstructed jets which are matched with MC information - Mtop = 171.5GeV - sigma Mtop = 16.8 GeV - MW = 80. 5GeV - sigma MW = 9.9 GeV - angle(jj) = sigma angle(jj) = 0.277

Isolated Lepton Selection Isolated Lepton Previous Definition 30 current lepton ID muon selection electron selection tau (leptonic decay) tau (hadronic decay)

Isolated Lepton Selection Isolated Lepton Previous Definition 31 current lepton ID muon selection electron selection tau (leptonic decay) tau (hadronic decay)

Isolated Lepton Selection Isolated Lepton Previous Definition 32 current lepton ID muon selection electron selection tau (leptonic decay) tau (hadronic decay)

Isolated Lepton Selection Isolated Lepton Previous Definition 33 current lepton ID muon selection electron selection tau (leptonic decay) tau (hadronic decay) in hadronic tau category, purity of tau is ~80%. There are ~10% contamination from electron and another ~10% comes from light flavor.

34 (Pe -,Pe + )=(-0.8,+0.3) no cut61.3 only Iso Lep cut41.89 e16.2 mu 17.6 tau7.2 after event selection10.6 e4.3 mu4.7 tau1.3