Speaker: SSG4Env WP4 Semantic Integrator Proposal & WP2 Collaboration.

Slides:



Advertisements
Similar presentations
웹 서비스 개요.
Advertisements

Università di Modena e Reggio Emilia ;-)WINK Maurizio Vincini UniMORE Researcher Università di Modena e Reggio Emilia WINK System: Intelligent Integration.
Building a Semantic IntraWeb with Rhizomer and a Wiki Roberto Garcia and Rosa Gil GRIHO (Human Computer Interaction Research Group) Universitat de Lleida,
R 2 O+ODEMapster : Upgrading Relational Legacy Data to the Semantic Web Jesús Barrasa Rodríguez
Requirements. UC&R: Phase Compliance model –RIF must define a compliance model that will identify required/optional features Default.
SPARQL Dimitar Kazakov, with references to material by Noureddin Sadawi ARIN, 2014.
A Prototype Implementation of a Framework for Organising Virtual Exhibitions over the Web Ali Elbekai, Nick Rossiter School of Computing, Engineering and.
GridVine: Building Internet-Scale Semantic Overlay Networks By Lan Tian.
Speaker: Jean-Paul Calbimonte Building Semantic Sensor Webs and Applications Querying Streaming Data through Ontologies Jean-Paul Calbimonte Universidad.
Fall Semantics Juan Carlos Guzmán CS 3123 Programming Languages Concepts Southern Polytechnic State University.
From Relational to Semantics A Methodology Arka Mukherjee, Ph.D. Founder / CTO Global IDs David Schaengold Director,
Analyzing Minerva1 AUTORI: Antonello Ercoli Alessandro Pezzullo CORSO: Seminari di Ingegneria del SW DOCENTE: Prof. Giuseppe De Giacomo.
© 2008 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice Enterprise Information Integration.
Query Execution Professor: Dr T.Y. Lin Prepared by, Mudra Patel Class id: 113.
Distributed Query Processing over Streaming and Stored Data Alasdair J G Gray Information Management Group University of Manchester Dagstuhl Seminar –
Xyleme A Dynamic Warehouse for XML Data of the Web.
The Data Ring: Community Content Sharing Serge Abiteboul (INRIA) Alkis Polyzotis (UC Santa Cruz)
CMSC838 Project Presentation An Ontology-based Approach for Managing Software Components by Vladimir Kolovski.
Semantic Representation of Temporal Metadata in a Virtual Observatory Han Wang 1 Eric Rozell 1
Semantic Representation of Temporal Metadata in a Virtual Observatory Han Wang 1 Eric Rozell 1
Ontology-based Access Ontology-based Access to Digital Libraries Sonia Bergamaschi University of Modena and Reggio Emilia Modena Italy Fausto Rabitti.
Audumbar Chormale Advisor: Dr. Anupam Joshi M.S. Thesis Defense
Making Database Applications Perform Using Program Analysis Alvin Cheung Samuel Madden Armando Solar-Lezama MIT Owen Arden Andrew C. Myers Cornell.
CVSQL 2 The Design. System Overview System Components CVSQL Server –Three network interfaces –Modular data source provider framework –Decoupled SQL parsing.
Speaker: Alasdair J G Gray Semantic Sensor Web Components ESWC 2011 Tutorial 29 May 2011.
Rajashree Deka Tetherless World Constellation Rensselaer Polytechnic Institute.
Context Tailoring the DBMS –To support particular applications Beyond alphanumerical data Beyond retrieve + process –To support particular hardware New.
1 SAMT’08 Semantic-driven multimedia retrieval with the MPEG Query Format Ruben Tous and Jaime Delgado Distributed Multimedia Applications Group (DMAG)
Ontology-based Stream/Sensor Data Modeling Presented by: Ashraf Heydari Supervisor: Dr. Kahani.
Cloud Computing Other High-level parallel processing languages Keke Chen.
MapReduce – An overview Medha Atre (May 7, 2008) Dept of Computer Science Rensselaer Polytechnic Institute.
Data Integration on the Semantic Sensor Web Alasdair J G Gray Information Management Group University of Manchester Seminar at Imperial College London.
Ultrawrap: SPARQL Execution on Relational Data Juan F. Sequeda, Daniel P. Miranker University of Texas - Austin ISWC 2009 Seoul National University Internet.
Trisolda Jakub Yaghob Charles University in Prague, Czech Rep.
Ashwani Roy Understanding Graphical Execution Plans Level 200.
Massively Distributed Database Systems - Distributed DBS Spring 2014 Ki-Joune Li Pusan National University.
Daniel J. Abadi · Adam Marcus · Samuel R. Madden ·Kate Hollenbach Presenter: Vishnu Prathish Date: Oct 1 st 2013 CS 848 – Information Integration on the.
Ocean Observatories Initiative Data Management (DM) Subsystem Overview Michael Meisinger September 29, 2009.
Semantic Access to Existing Archives Using RDF and SPARQL Alasdair J G Gray.
4BP1 Electronic & Computer Engineering Paul Gildea th Year Interim Project Presentation.
SPARQL Query Graph Model (How to improve query evaluation?) Ralf Heese and Olaf Hartig Humboldt-Universität zu Berlin.
MyActivity: A Cloud-Hosted Ontology-Based Framework for Human Activity Querying Amin BakhshandehAbkear Supervisor:
Workpackage 2: Implementation Infrastructure. WP2: Objectives Main Objective of WP2: Integrated Optique Platform Main Objective of WP2: Integrated Optique.
Efficient RDF Storage and Retrieval in Jena2 Written by: Kevin Wilkinson, Craig Sayers, Harumi Kuno, Dave Reynolds Presented by: Umer Fareed 파리드.
RDF languages and storages part 1 - expressivness Maciej Janik Conrad Ibanez CSCI 8350, Fall 2004.
Long Term Ecological Research Network Office Trends Project Spaghetti & Linguine (aka Trends Data Store) Mark Servilla 14 September.
Issues in Ontology-based Information integration By Zhan Cui, Dean Jones and Paul O’Brien.
Querying The Internet With PIER Nitin Khandelwal.
Triple Stores. What is a triple store? A specialized database for RDF triples Can ingest RDF in a variety of formats Supports a query language – SPARQL.
Conclusions Presenter: Manolis Koubarakis Extended Semantic Web Conference 2012.
Raluca Paiu1 Semantic Web Search By Raluca PAIU
An Effective SPARQL Support over Relational Database Jing Lu, Feng Cao, Li Ma, Yong Yu, Yue Pan SWDB-ODBIS 2007 SNU IDB Lab. Hyewon Lim July 30 th, 2009.
Chapter 9: Web Services and Databases Title: NiagaraCQ: A Scalable Continuous Query System for Internet Databases Authors: Jianjun Chen, David J. DeWitt,
WonderWeb. Ontology Infrastructure for the Semantic Web. IST Project Review Meeting, 11 th March, WP2: Tools Raphael Volz Universität.
Sesame A generic architecture for storing and querying RDF and RDFs Written by Jeen Broekstra, Arjohn Kampman Summarized by Gihyun Gong.
OGSA-DQP Steven Lynden University of Manchester. Data access & integration with OGSA-DAI: GGF 17 2 Introduction OGSA-DQP is a service based distributed.
Chapter 13: Query Processing
The AstroGrid-D Information Service Stellaris A central grid component to store, manage and transform metadata - and connect to the VO!
Stream Reasoning with Linked Data Open Data Open Day 2013 Sina Samangooei, Nick Gibbins 26 June 2013.
CS4432: Database Systems II Query Processing- Part 1 1.
Streaming Semantic Data COMP6215 Semantic Web Technologies Dr Nicholas Gibbins –
BBY 464 Semantic Information Management (Spring 2016) Semantic Query Languages Yaşar Tonta & Orçun Madran [yasartonta, Hacettepe.
1 RDF Storage and Retrieval Systems Jan Pettersen Nytun, UiA.
AstroGrid-D Host Monitoring in AstroGrid-D with GRAM-Audit or SGAS based on Usage Records Format S. Braune, F. Breitling, H. Enke AIP.
Components.
Middleware independent Information Service
R2O+ODEMapster: Upgrading Relational Legacy Data to the Semantic Web
Database SQL.
Course Instructor: Supriya Gupta Asstt. Prof
Presentation transcript:

Speaker: SSG4Env WP4 Semantic Integrator Proposal & WP2 Collaboration

WP4 Design & implement Semantic Integrator Service D4.1 Related work on Semantic data integration, Ontology-based data access Semantic queries over streaming data Proposal of Ontology-base integration model for heterogeneous streaming and stored data

Requirements Based on use-cases Integrate stored and streaming data sources Integrate sources through unified view Pose declarative queries over integrated view Integrate Decl. Query Sensor Network Database Data Stream Data Integrated view

Background Ontology based data access Ontology-based data integration Streaming data access Distributed query processing SNEE/SNEEql R 2 O/ODEMapster SPARQL streaming extensions

Ontology-based data access & integration Ontological modelDatabase SquirrelRDF RDBToOnto Relational.OWL SPASQL Virtuoso D2RQ MASTRO R 2 O + ODEMapster OBSERVER SIMS Carnot DWQ PICSEL MOMIS Transform relational query Ontological query Mapping Ontological model Databases Transform relational query Ontological query Mappings R2OR2O ODEMapster ODEMQL OWL MySQL Oracle...others

Streaming Data Access (t9, a1, a2,..., an) (t8, a1, a2,..., an) (t7, a1, a2,..., an)... (t1, a1, a2,..., an)... Streaming Data Window [t7 - t9] Continuously appended data Potentially infinite Time-stamped tuples Continuous queries Latest information used in queries Windows: time and tuple based Archival data Query Sensor Networks characteristics Low computational, power resources, storage Distributed query execution Routing, Optimization SNEE SNEEql

SPARQL streaming extensions SPARQL RDF query language Language limitations for streams Windows, time, tuple Data model Aggregates, stream operators Streaming SPARQL C-SPARQL

Approach Establish global ontological view Mapping global to local views Mapping ontological model to stream/stored sources Define semantic streaming queries over ontological model Transform semantic queries to inter-lingua streaming query language Distributed query evaluation in distributed sources Integration and transformation of results

Semantic Integrator q Query canonisation QcQc Query Processing Data decanonisation d DlDl Client S 2 O mappings SPARQL STR (O g ) SNEEql (S 1 S 2 S n ) [tuple] [tuple l1 l2 l3 ] [triple Og ] Ontology-based Streaming Data Access Service Query reconciliation Data reconciliation Ontology-to-Ontology mappings qrqr SPARQL STR (O g ) drdr [triple O1O2On ]

Semantic Integrator Query translation Distributed Query Processing Client S 2 O mappings SPARQL STR (O 1 O 2 O n ) Stream Engine (S 3 ) Ontology-based Streaming Integration Service Query reconciliation Ontology-to- Ontology mappings SPARQL STR (O g ) Rewriter Optimiser Query Evaluator Query Evaluator Sensor Network (S 1 ) Relational DB (S 2 ) RDF Store (S m ) SPARQL STR algebra (S 1 S 2 S m ) Ontology-to-Source mappings

Semantic Integrator q Query translation QcQc Query Processing Data translation d DlDl Client S 2 O mappings SNEEql (S 1 S 2 S n ) [tuple] [tuple l1 l2 l3 ] [triple Og ] Ontology-based Streaming Data Access Service SPARQL Stream (O g )

Distributed Query Processing Parse Logical rewrite Physical optimization Partition Leaf specific scans Abstract Syntax Tree Logical Algebrai c Form Physical Algebrai c Form Distributed Algebraic Form Parse query string, using grammar, produce AST Produce logical plan Produce physical plan including optimizations Identify exchange points, add to the distribute plan Retrieve data from external sources

Architecture

Integration Interface IntegrateAs operation Reference to sources Mapping Global-to-Local ontologies Sources have an ontological view registered Mappings from ontological views to inter-lingua Returns reference to integrated data resource

Query Interface ExecuteQuery One shot queries ExecuteQueryFactory Used for most streaming queries Pull/push in config document Push delivery -> use Subscription Pull delivery -> use Data Access Typically StreamExecuteFactory

Cross-cutting issues Identify queries from both use-cases Characterization of queries Represent queries in global query language Study the query semantics of QL for RDF Streams compared to SNEEql semantics

R 2 O + ODEMapster Starting with SPARQL support Define «S2O » extensions for R2O Define SPARQL STR language syntax and semantics Engine support for « S2O » documents, SPARQL STR queries Engine support for SNEEql translation and connection

Thanks... windsamples

s:windsamples sensorid: int PK ts: datetime PK speed: float t:sensors sensorid: int PK sensorname: st WindSpeed Measurement Sensor isProducedBy xsd:int hasSpeed conceptmap-def WindSpeedMeasurement virtualStream uri-as concat('ssg4env:WindSM_', windsamples.sensorid,windsamples.ts) attributemap-def hasSpeed operation constant has-column windsamples.speed dbrelationmap-def isProducedBy toConcept Sensor joins-via condition equals has-column sensors.sensorid has-column windsamples.sensorid conceptmap-def Sensor uri-as concat('ssg4env:Sensor_',sensors.sensorid) attributemap-def hasSensorid operation constant has-column sensors.sensorid xsd:float hasSensorid OntologiesStreamsS 2 O Mapping

Extras

Thru the example… Consider a simple query: obtain the current measured wind speed and direction, measurement time and sensor location. Speed and direction retrieved from sensor network. Sensor location found on a table.

SPARQL STR Query Not restricted to C-SPARQL or Streaming SPARQL limitations (no reason) Join of two distributed sources Join of stream and stored sources REGISTER … PREFIX fire SELECT ?long ?lat ?speed ?dir ?ts FROM STREAM [NOW] WHERE { ?id a fire:WindSensor; fire:hasLong ?long; fire:hasLat ?lat; fire:hasSpeed ?speed fire:hasDir ?dir fire:hasTS ?ts. }

SPARQL STR on Local Ontologies REGISTER … PREFIX wind PREFIX loc SELECT ?long ?lat ?speed ?dir ?ts FROM STREAM [NOW] WHERE { ?wind a wind:Sensor; wind:hasSpeed ?speed; wind:hasDirection ?dir; wind:hasTS ?ts. ?locid a loc:Location; loc:hasLong ?long; loc:hasLat ?lat. }

SNEEql query RSTREAM SELECT p.long, p.lat, w.speed, w.dir, w.ts FROM Wind [NOW] as w, Placement [NOW] as p WHERE p.id=w.id