The “ Local Group ” of Galaxies Two large spiral galaxies Milky Way & Andromeda (Messier 31 or M31) Distance between them: D = 700 kpc = 2.3 x 10 6 light.

Slides:



Advertisements
Similar presentations
Star Formation Why is the sunset red? The stuff between the stars
Advertisements

Notes 30.2 Stellar Evolution
Copyright © 2010 Pearson Education, Inc. Clicker Questions Chapter 12 Stellar Evolution.
George Observatory The Colorful Night Sky.
Star Formation and the Interstellar Medium
Stellar Evolution Describe how a protostar becomes a star.
Life Cycle of Stars. Omega / Swan Nebula (M17) Stars are born from great clouds of gas and dust called Stars are born from great clouds of gas and dust.
Life Cycles of Stars.
Life Cycle of Stars. Birth of a Star Born from interstellar matter (dust & gases) – Denser portions of the nebula Nebula begins to contract – Due to gravity.
Chapter 12 Stellar Evolution. Infrared Image of Helix Nebula.
Objectives Determine the effect of mass on a star’s evolution.
Stellar Evolution. Basic Structure of Stars Mass and composition of stars determine nearly all of the other properties of stars Mass and composition of.
The Evolution of Stars - stars evolve in stages over billions of years 1.Nebula -interstellar clouds of gas and dust undergo gravitational collapse and.
The Lives of Stars Chapter 12. Life on Main-Sequence Zero-Age Main Sequence (ZAMS) –main sequence location where stars are born Bottom/left edge of main.
Copyright © 2010 Pearson Education, Inc. Clicker Questions Chapter 11 The Interstellar Medium.
Astronomy 1 – Winter 2011 Lecture 21; February
Chapter 11 The Lives of Stars. What do you think? Where do stars come from? Do stars with greater or lesser mass last longer?
STAR BIRTH. Guiding Questions Why do astronomers think that stars evolve? What kind of matter exists in the spaces between the stars? Where do new stars.
Astronomy 1020 Stellar Astronomy Spring_2015 Day-33.
Off the Main Sequence - The Evolution of a Sun-like Star Stages
Astronomy 1020-H Stellar Astronomy Spring_2015 Day-33.
Copyright © 2010 Pearson Education, Inc. Life Cycle of the Stars.
Pg. 12.  Mass governs a star’s properties  Energy is generated by nuclear fusion  Stars that aren’t on main sequence of H-R either have fusion from.
JP ©1 2 3 Stars are born, grow up, mature, and die. A star’s mass determines its lifepath. Let M S = mass of the Sun = ONE SOLAR MASS Stellar Evolution.
Lifecycle Lifecycle of a main sequence G star Most time is spent on the main-sequence (normal star)
Stellar Evolution: After the main Sequence Beyond hydrogen: The making of the elements.
1 Stellar Lifecycles The process by which stars are formed and use up their fuel. What exactly happens to a star as it uses up its fuel is strongly dependent.
Stellar Formation 1)Solar Wind/Sunspots 2)Interstellar Medium 3)Protostars 4)A Star is Born October 23, 2002.
Quiz #6 Most stars form in the spiral arms of galaxies Stars form in clusters, with all types of stars forming. O,B,A,F,G,K,M Spiral arms barely move,
StarsStars. A Star…. Heats and lights the planets in a solar system Is a ball of plasma (4 th state of matter consisting of ionized particles) held together.
The Lives and Deaths of Stars
The Universe… …is space and everything in it.
Star Formation Why is the sunset red? The stuff between the stars
Chapter 12 Star Stuff Evolution of Low-Mass Stars 1. The Sun began its life like all stars as an intersteller cloud. 2. This cloud collapses due to.
Life Cycle of Stars Birth Place of Stars:
Chapter 30 Section 2 Handout
Life Cycle of a Star Star Life Cycle: Stars are like humans. They are born, live and then die.
Stellar Lifecycles The process by which stars are formed and use up their fuel. What exactly happens to a star as it uses up its fuel is strongly dependent.
Chapter 11 The Interstellar Medium
Chapter 11 The Interstellar Medium
Homework #10 Cosmic distance ladder III: Use formula and descriptions given in question text Q7: Luminosity, temperature and area of a star are related.
Unit 1: Space The Study of the Universe.  Mass governs a star’s temperature, luminosity, and diameter.  Mass Effects:  The more massive the star, the.
Classificati on HR diagramStar clustersTermsLife cycle Life Cycles 2 $ 200 $ 200$200 $ 200 $400 $ 400$400 $ 400 $600 $ 600$600 $ 600 $ 600$600 $800.
The Sun-Earth-Moon System. What is the moon? The moon is a natural satellite of Earth This means that the moon orbits Earth.
1 The “ Local Group ” of Galaxies Two large spiral galaxies Milky Way & Andromeda (Messier 31 or M31) Distance between them: D = 700 kpc = 2.3 x 10 6 light.
The Star Cycle. Birth Stars begin in a DARK NEBULA (cloud of gas and dust)… aka the STELLAR NURSERY The nebula begins to contract due to gravity in.
The Lives of Stars. Topics that will be on the test!! Apparent and Absolute Magnitude HR Diagram Stellar Formation and Lifetime Binary Stars Stellar Evolution.
Death of Stars. Lifecycle Lifecycle of a main sequence G star Most time is spent on the main-sequence (normal star)
The Evolution of Low-mass Stars. After birth, newborn stars are very large, so they are very bright. Gravity causes them to contract, and they become.
Off the Main Sequence - The Evolution of a Sun-like Star Stages
Study of the universe (Earth as a planet and beyond)
Stellar Evolution Chapters 16, 17 & 18. Stage 1: Protostars Protostars form in cold, dark nebulae. Interstellar gas and dust are the raw materials from.
Stellar Evolution – Life of a Star Stellar evolution is the process in which the forces of pressure (gravity) alter the star. Stellar evolution is inevitable;
Stars and Galaxies Traveling Beyond the Earth Chapter 21.
Stellar Evolution (Star Life-Cycle). Basic Structure Mass governs a star’s temperature, luminosity, and diameter. In fact, astronomers have discovered.
Study of the universe (Earth as a planet and beyond)
Chapter 30 Section 2- Stellar Evolution
Star Formation - 6 (Chapter 5 – Universe).
A Star is Born! Giant molecular clouds: consist of mostly H2 plus a small amount of other, more complex molecules Dense cores can begin to collapse under.
© 2017 Pearson Education, Inc.
Stellar Evolution Chapters 16, 17 & 18.
Chapter 30 Section 2 Handout
Section 3: Stellar Evolution
Contents of the Universe
How Stars Evolve Pressure and temperature The fate of the Sun
With thanks to Stellar Life Cycle With thanks to
How Stars Evolve Pressure and temperature The fate of the Sun
You can often predict how a baby will look as an adult by looking at other family members. Astronomers observe stars of different ages to infer how stars.
Chapter 13 Star Stuff.
Stars and Galaxies.
Presentation transcript:

The “ Local Group ” of Galaxies Two large spiral galaxies Milky Way & Andromeda (Messier 31 or M31) Distance between them: D = 700 kpc = 2.3 x 10 6 light yrs Each large spiral galaxy has several smaller satellite galaxies in orbit around it Milky Way: Large Magellanic Cloud (LMC), Small Magellanic Cloud (SMC), Sagittarius dwarf, etc Andromeda: Messier 32 (M32), NGC 205, NGC 147, etc

You are here

i>clicker quiz #33 Which of the following statements about the EPOCH OF CONFINEMENT is TRUE? A.At this instant, quarks became bound in sets of three to produce protons and neutrons, while matter and radiation continued to interact strongly B.The Universe was matter dominated at this epoch C.Protons and electrons formed stable hydrogen atoms for the first time at this epoch, and the matter in the Universe became mostly transparent to radiation D.This epoch was immediately followed by Inflation

i>clicker quiz #34 The Moon ’ s spin period about its own axis is the same as its orbital period around the Earth. Which of the following statements can be TRUE about a Moon-based astronomer? A.She sees the Earth rise and set once every spin period B.She sees the Sun rise and set once every spin period C.She does not experience day and night D.She always sees the Sun

“ Finger of God ” effect

A Star is Born! Giant molecular clouds: consist of mostly H 2 plus a small amount of other, more complex molecules Dense cores can begin to collapse under their own gravitational attraction As a cloud core collapses, the density and temperature of the gas increase → more blackbody radiation Opacity — the gas is not transparent to the radiation, and the radiation interacts with the gas particles exerting an outward pressure known as radiation pressure The intense radiation from hot, young stars ionizes the gaseous interstellar medium surrounding it — this is known as an HII region

Young star cluster: NGC 3603

Proto-stars Gravitational collapse is usually accompanied by the formation of an accretion disk and bi-polar jets of outflowing material The remnants of an accretion disk can ultimately give rise to planets — these disks are often referred to as proto- planetary disks

Hayashi tracks A proto-star ’ s temperature and luminosity can be plotted on a Hertzsprung-Russell diagram or HR diagram Proto-stars tend to become hotter but less luminous during the process of gravitational contraction; the decrease in luminosity is mostly a result of the proto-star becoming smaller The exact track in an HR diagram followed by a contracting proto-star depends on its mass These tracks are called Hayashi tracks, after the Japanese astrophysicist who first researched this problem

Properties of a Newborn Star The Zero Age Main Sequence (ZAMS) represents the onset or start of nuclear burning (fusion) The properties of a star on the ZAMS are primarily determined by its mass, somewhat dependent on chemical composition (fraction of He and heavier elements) The classification of stars in an HR diagram by their spectral type (OBAFGKM) is directly related to their surface temperature A study of the exact shape of the ZAMS in an HR diagram indicates that more massive stars have larger radii than less massive stars

Evolution (Aging) of a Star A star remains on the main sequence as long as it is burning hydrogen (converting it to helium) in its center or core; A main sequence star is also called a dwarf The time spent by a star on the main sequence (i.e., the time it takes to finish burning hydrogen in its core) depends on its mass Stars like the Sun have main sequence lifetimes of several billion years; Less massive stars have longer lifetimes; more massive stars have shorter lifetimes (as short as a few million years) A given star spends most of its lifetime on the main sequence (main sequence lifetime ~ total lifetime); the evolution beyond main sequence is relatively rapid

Evolution on the HR Diagram Luminosity classes in an HR diagram (I through V) are based on the evolutionary phase of a star — whether it is a dwarf, subgiant, giant, or supergiant Main sequence → Subgiant/Red giant: From burning hydrogen in the core to burning hydrogen in a shell that surrounds an inert (i.e., non-burning) helium core Red giant → Horizontal Branch: Helium ignition (or helium flash) occurs at the tip of the red giant branch, after which the star burns helium in its core Subsequent thermal pulses are associated with the burning of successively heavier elements (carbon, oxygen, etc.)

Planetary Nebulae The loosely bound outer material is ejected by radiation pressure driving a superwind This is known as the planetary nebula phase of a star (actually, this phase has nothing to do with planet formation!)

i>clicker quiz #35 How much bigger / smaller is a 15 M sun star main sequence compared to an 0.5 M sun main sequence star? A.50 times smaller B.10 times smaller C.10 times larger D.Same size