Network Security7-1 Chapter 8: Network Security Chapter goals: r Understand principles of network security: m cryptography and its many uses beyond “confidentiality”

Slides:



Advertisements
Similar presentations
Cryptography. 8: Network Security8-2 The language of cryptography symmetric key crypto: sender, receiver keys identical public-key crypto: encryption.
Advertisements

Public Key Cryptography & Message Authentication By Tahaei Fall 2012.
Network Security Hwajung Lee. What is Computer Networks? A collection of autonomous computers interconnected by a single technology –Interconnected via:
1 Counter-measures Threat Monitoring Cryptography as a security tool Encryption Digital Signature Key distribution.
1 Counter-measures Threat Monitoring Cryptography as a security tool Encryption Authentication Digital Signature Key distribution.
Chapter 8 Network Security Computer Networking: A Top Down Approach, 5 th edition. Jim Kurose, Keith Ross Addison-Wesley, April 2009.
8-1 What is network security? Confidentiality: only sender, intended receiver should “understand” message contents m sender encrypts message m receiver.
1 ITC242 – Introduction to Data Communications Week 11 Topic 17 Chapter 18 Network Security.
CSE401n:Computer Networks
Network Security understand principles of network security:
8: Network Security8-1 Chapter 8 Network Security A note on the use of these ppt slides: We’re making these slides freely available to all (faculty, students,
8: Network Security8-1 Symmetric key cryptography symmetric key crypto: Bob and Alice share know same (symmetric) key: K r e.g., key is knowing substitution.
Lecture 24 Cryptography CPE 401 / 601 Computer Network Systems slides are modified from Jim Kurose and Keith Ross and Dave Hollinger.
8-1 Chapter 8 Security Computer Networking: A Top Down Approach 6 th edition Jim Kurose, Keith Ross Addison-Wesley March 2012 A note on the use of these.
Lecture 23 Cryptography CPE 401 / 601 Computer Network Systems Slides are modified from Jim Kurose & Keith Ross.
Chapter 31 Network Security
Behzad Akbari Spring In the Name of the Most High.
1-1 1DT066 Distributed Information System Chapter 8 Network Security.
8-1Network Security Chapter 8 roadmap 8.1 What is network security? 8.2 Principles of cryptography 8.3 Message integrity, authentication.
 This Class  Chapter 8. 2 What is network security?  Confidentiality  only sender, intended receiver should “understand” message contents.
Network Security7-1 Chapter 8: Network Security Chapter goals: r understand principles of network security: m cryptography and its many uses beyond “confidentiality”
Introduction1-1 Data Communications and Computer Networks Chapter 6 CS 3830 Lecture 31 Omar Meqdadi Department of Computer Science and Software Engineering.
Cryptography Wei Wu. Internet Threat Model Client Network Not trusted!!
23-1 Last time □ P2P □ Security ♦ Intro ♦ Principles of cryptography.
ICT 6621 : Advanced NetworkingKhaled Mahbub, IICT, BUET, 2008 Lecture 11 Network Security (1)
Network Security7-1 CIS3360: Chapter 8: Cryptography Application of Public Cryptography Cliff Zou Spring 2012 TexPoint fonts used in EMF. Read the TexPoint.
1-1 1DT066 Distributed Information System Chapter 8 Network Security.
1 Security and Cryptography: basic aspects Ortal Arazi College of Engineering Dept. of Electrical & Computer Engineering The University of Tennessee.
Upper OSI Layers Natawut Nupairoj, Ph.D. Department of Computer Engineering Chulalongkorn University.
8-1 Chapter 8 Security Computer Networking: A Top Down Approach 6 th edition Jim Kurose, Keith Ross Addison-Wesley March 2012 part 2: Message integrity.
1 Network Security Basics. 2 Network Security Foundations: r what is security? r cryptography r authentication r message integrity r key distribution.
Network Security7-1 CAP6135: Malware and Software Vulnerability Analysis Basic Knowledge on Computer Network Security Cliff Zou Spring 2011.
31.1 Chapter 31 Network Security Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
Network Security7-1 Today r Reminders m Ch6 Homework due Wed Nov 12 m 2 nd exams have been corrected; contact me to see them r Start Chapter 7 (Security)
+ Security. + What is network security? confidentiality: only sender, intended receiver should “understand” message contents sender encrypts message receiver.
Computer and Network Security - Message Digests, Kerberos, PKI –
Network Security7-1 Chapter 7: Network Security Chapter goals: r understand principles of network security: m cryptography and its many uses beyond “confidentiality”
 Last Class  Chapter 7 on Data Presentation Formatting and Compression  This Class  Chapter 8.1. and 8.2.
Lecture 22 Network Security (cont) CPE 401 / 601 Computer Network Systems slides are modified from Dave Hollinger slides are modified from Jim Kurose,
Cryptography services Lecturer: Dr. Peter Soreanu Students: Raed Awad Ahmad Abdalhalim
8: Network Security8-1 Chapter 8 Network Security A note on the use of these ppt slides: We’re making these slides freely available to all (faculty, students,
8-1 Chapter 8 Security Computer Networking: A Top Down Approach 6 th edition Jim Kurose, Keith Ross Addison-Wesley March 2012 A note on the use of these.
Chapter 8: Network Security
Digital Signatures Cryptographic technique analogous to hand-written signatures. sender (Bob) digitally signs document, establishing he is document owner/creator.
What is network security?
CAP6135: Malware and Software Vulnerability Analysis Basic Knowledge on Computer Network Security Cliff Zou Spring 2013 Network Security 1.
Basic Network Encryption
Chapter 8: Network Security
CAP6135: Malware and Software Vulnerability Analysis Basic Knowledge on Computer Network Security Cliff Zou Spring 2014 Network Security 1.
Chapter 8: Network Security
CAP6135: Malware and Software Vulnerability Analysis Basic Knowledge on Computer Network Security Cliff Zou Spring 2010 Network Security 1.
CAP6135: Malware and Software Vulnerability Analysis Basic Knowledge on Computer Network Security Cliff Zou Spring 2015 Network Security 1.
Digital Signatures Cryptographic technique analogous to hand-written signatures. sender (Bob) digitally signs document, establishing he is document owner/creator.
CAP6135: Malware and Software Vulnerability Analysis Basic Knowledge on Computer Network Security Cliff Zou Spring 2009 Network Security 1.
Network Security Basics
1DT057 Distributed Information System Chapter 8 Network Security
CAP6135: Malware and Software Vulnerability Analysis Basic Knowledge on Computer Network Security Cliff Zou Spring 2016 Network Security 1.
Intro to Cryptography Some slides have been taken from:
Protocol ap1.0: Alice says “I am Alice”
Encryption INST 346, Section 0201 April 3, 2018.
Digital Signatures Cryptographic technique analogous to hand-written signatures. sender (Bob) digitally signs document, establishing he is document owner/creator.
Digital Signatures Cryptographic technique analogous to hand-written signatures. sender (Bob) digitally signs document, establishing he is document owner/creator.
Basic Network Encryption
Digital Signatures Cryptographic technique analogous to hand-written signatures. sender (Bob) digitally signs document, establishing he is document owner/creator.
Security: Integrity, Authentication, Non-repudiation
Chapter 8: Network Security
Digital Signatures Cryptographic technique analogous to hand-written signatures. sender (Bob) digitally signs document, establishing he is document owner/creator.
Chapter 8 roadmap 8.1 What is network security?
Chapter 8: Network Security
Presentation transcript:

Network Security7-1 Chapter 8: Network Security Chapter goals: r Understand principles of network security: m cryptography and its many uses beyond “confidentiality” m authentication m message integrity m key distribution

Network Security7-2 What is network security? Confidentiality: only sender, intended receiver should “understand” message contents m sender encrypts message m receiver decrypts message Authentication: sender, receiver want to confirm identity of each other m Virus really from your friends? m The website really belongs to the bank? Message Integrity: sender, receiver want to ensure message not altered (in transit, or afterwards) without detection m Digital signature

Network Security7-3 What is network security? Other Requirements: Nonrepudiation: sender cannot deny later that messages received were not sent by him/her Access and Availability: services must be accessible and available to users upon demand m Denial of service attacks Anonymity: identity of sender is hidden from receiver (within a group of possible senders)

Network Security7-4 Friends and enemies: Alice, Bob, Trudy r well-known in network security world r Bob, Alice (lovers!) want to communicate “securely” r Trudy (intruder) may intercept, delete, add messages secure sender secure receiver channel data, control messages data Alice Bob Trudy

Network Security7-5 The language of cryptography plaintext ciphertext K A encryption algorithm decryption algorithm Alice’s encryption key Bob’s decryption key K B m plaintext message K A (m) ciphertext, encrypted with key K A m = K B (K A (m))

Network Security Breaking an encryption scheme r cipher-text only attack: Trudy has ciphertext she can analyze r two approaches: m brute force: search through all keys m statistical analysis r known-plaintext attack: Trudy has plaintext corresponding to ciphertext m e.g., in monoalphabetic cipher, Trudy determines pairings for a,l,i,c,e,b,o, r chosen-plaintext attack: Trudy can get ciphertext for chosen plaintext

Two Classes of Cryptography Network Security7-7 symmetric key crypto: sender, receiver keys identical public-key crypto: encryption key public, decryption key secret (private)

Network Security7-8 Classical Cryptography r Transposition Cipher r Substitution Cipher m Simple substitution cipher (Caesar cipher) m Vigenere cipher m One-time pad

Network Security7-9 Transposition Cipher: rail fence r Write plaintext in two rows in column order r Generate ciphertext in row order r Example: “HELLOWORLD” HLOOL ELWRD ciphertext: HLOOLELWRD Problem: does not affect the frequency of individual symbols

Network Security7-10 Simple substitution cipher substituting one thing for another m Simplest one: monoalphabetic cipher: substitute one letter for another (Caesar Cipher) A B C D E F G H I J K L M N O P Q R S T U V W X Y Z D E F G H I J K L M N O P Q R S T U V W X Y Z A B C Example: encrypt “I attack”

Network Security substitution cipher: substituting one thing for another m monoalphabetic cipher: substitute one letter for another plaintext: abcdefghijklmnopqrstuvwxyz ciphertext: mnbvcxzasdfghjklpoiuytrewq Plaintext: bob. i love you. alice ciphertext: nkn. s gktc wky. mgsbc e.g.: Encryption key: mapping from set of 26 letters to set of 26 letters

Network Security7-12 Problem of simple substitution cipher r The key space for the English Alphabet is very large: 26!  4 x r However: m Previous example has a key with only 26 possible values m English texts have statistical structure: the letter “ e ” is the most used letter. Hence, if one performs a frequency count on the ciphers, then the most frequent letter can be assumed to be “ e ”

Network Security7-13 Distribution of Letters in English Frequency analysis

Network Security7-14 Vigenere Cipher r Idea: Uses Caesar's cipher with various different shifts, in order to hide the distribution of the letters. r A key defines the shift used in each letter in the text r A key word is repeated as many times as required to become the same length Plain text: I a t t a c k Key: (key is “234”) Cipher text: K d x v d g m

Network Security7-15 Problem of Vigenere Cipher r Vigenere is easy to break (Kasiski, 1863): r Assume we know the length of the key. We can organize the ciphertext in rows with the same length of the key. Then, every column can be seen as encrypted using Caesar's cipher. r The length of the key can be found using several methods: m 1. If short, try 1, 2, 3,.... m 2. Find repeated strings in the ciphertext. Their distance is expected to be a multiple of the length. Compute the gcd of (most) distances. m 3. Use the index of coincidence.

Network Security7-16 One-time Pad r Extended from Vigenere cipher r Key is as long as the plaintext r Key string is random chosen m Pro: Proven to be “perfect secure” m Cons: How to generate Key? How to let bob/alice share the same key pad? m Code book

Network Security7-17 Symmetric key cryptography symmetric key crypto: Bob and Alice share know same (symmetric) key: K r e.g., key is knowing substitution pattern in mono alphabetic substitution cipher r Q: how do Bob and Alice agree on key value? plaintext ciphertext K A-B encryption algorithm decryption algorithm A-B K plaintext message, m K (m) A-B K (m) A-B m = K ( ) A-B

Network Security7-18 Symmetric key crypto: DES DES: Data Encryption Standard r US encryption standard [NIST 1993] r 56-bit symmetric key, 64-bit plaintext input r How secure is DES? m DES Challenge: 56-bit-key-encrypted phrase (“Strong cryptography makes the world a safer place”) decrypted (brute force) in 4 months m no known “backdoor” decryption approach r making DES more secure (3DES): m use three keys sequentially on each datum m use cipher-block chaining

Network Security7-19 Symmetric key crypto: DES initial permutation 16 identical “rounds” of function application, each using different 48 bits of key final permutation DES operation

Network Security7-20 AES: Advanced Encryption Standard r new (Nov. 2001) symmetric-key NIST standard, replacing DES r processes data in 128 bit blocks r 128, 192, or 256 bit keys r brute force decryption (try each key) taking 1 sec on DES, takes 149 trillion years for AES

Network Security7-21 Public Key Cryptography symmetric key crypto r requires sender, receiver know shared secret key r Q: how to agree on key in first place (particularly if never “met”)? public key cryptography r radically different approach [Diffie- Hellman76, RSA78] r sender, receiver do not share secret key r public encryption key known to all r private decryption key known only to receiver

Network Security7-22 Public key cryptography plaintext message, m ciphertext encryption algorithm decryption algorithm Bob’s public key plaintext message K (m) B + K B + Bob’s private key K B - m = K ( K (m) ) B + B -

Network Security7-23 Public key encryption algorithms need K ( ) and K ( ) such that B B.. given public key K, it should be impossible to compute private key K B B Requirements: 1 2 RSA: Rivest, Shamir, Adelson algorithm + - K (K (m)) = m B B

Network Security7-24 RSA: another important property The following property will be very useful later: K ( K (m) ) = m B B - + K ( K (m) ) B B + - = use public key first, followed by private key use private key first, followed by public key Result is the same!

Network Security RSA in practice: session keys r exponentiation in RSA is computationally intensive r DES is at least 100 times faster than RSA r use public key cryto to establish secure connection, then establish second key – symmetric session key – for encrypting data session key, K S r Bob and Alice use RSA to exchange a symmetric key K S r once both have K S, they use symmetric key cryptography

Network Security7-26 Digital Signatures Cryptographic technique analogous to hand- written signatures. r sender (Bob) digitally signs document, establishing he is document owner/creator. r verifiable, nonforgeable: recipient (Alice) can prove to someone that Bob, and no one else (including Alice), must have signed document

Network Security7-27 Digital Signatures Simple digital signature for message m: r Bob signs m by encrypting with his private key K B, creating “signed” message, K B (m) - - Dear Alice Oh, how I have missed you. I think of you all the time! …(blah blah blah) Bob Bob’s message, m Public key encryption algorithm Bob’s private key K B - Bob’s message, m, signed (encrypted) with his private key K B - (m)

Network Security7-28 Digital Signatures (more) r Suppose Alice receives msg m, digital signature K B (m) r Alice verifies m signed by Bob by applying Bob’s public key K B to K B (m) then checks K B (K B (m) ) = m. r If K B (K B (m) ) = m, whoever signed m must have used Bob’s private key Alice thus verifies that: ü Bob signed m. ü No one else signed m. ü Bob signed m and not m’. Non-repudiation: Alice can take m, and signature K B (m) to court and prove that Bob signed m. -

Network Security7-29 Message Digests Computationally expensive to public-key-encrypt long messages Goal: fixed-length, easy- to-compute digital “fingerprint” r apply hash function H to m, get fixed size message digest, H(m). Hash function properties: r many-to-1 r produces fixed-size msg digest (fingerprint) r given message digest x, computationally infeasible to find m such that x = H(m) large message m H: Hash Function H(m)

Network Security7-30 Internet checksum: poor crypto hash function Internet checksum has some properties of hash function: ü produces fixed length digest (16-bit sum) of message ü is many-to-one But given message with given hash value, it is easy to find another message with same hash value: different messages but identical checksums! I O U B O B 49 4F E D2 42 message ASCII format B2 C1 D2 AC I O U B O B 49 4F E D2 42 message ASCII format B2 C1 D2 AC

Network Security7-31 Hash Function Algorithms r MD5 hash function widely used (RFC 1321) m computes 128-bit message digest in 4-step process. m arbitrary 128-bit string x, appears difficult to construct msg m whose MD5 hash is equal to x. r SHA-1 is also used. m US standard [ NIST, FIPS PUB 180-1] m 160-bit message digest

Network Security7-32 large message m H: Hash function H(m) digital signature (encrypt) Bob’s private key K B - + Bob sends digitally signed message: Alice verifies signature and integrity of digitally signed message: K B (H(m)) - encrypted msg digest K B (H(m)) - encrypted msg digest large message m H: Hash function H(m) digital signature (decrypt) H(m) Bob’s public key K B + equal ? Digital signature = signed message digest No confidentiality !

Network Security7-33 Trusted Intermediaries Symmetric key problem: r How do two entities establish shared secret key over network? Solution: r trusted key distribution center (KDC) acting as intermediary between entities Public key problem: r When Alice obtains Bob’s public key (from web site, , diskette), how does she know it is Bob’s public key, not Trudy’s? Solution: r trusted certification authority (CA)

Network Security7-34 Certification Authorities r Certification authority (CA): binds public key to particular entity, E. r E (person, router) registers its public key with CA. m E provides “proof of identity” to CA. m CA creates certificate binding E to its public key. m certificate containing E’s public key digitally signed by CA – CA says “this is E’s public key” Bob’s public key K B + Bob’s identifying information digital signature (encrypt) CA private key K CA - K B + certificate for Bob’s public key, signed by CA - K CA (K ) B +

Network Security7-35 Certification Authorities r When Alice wants Bob’s public key: m gets Bob’s certificate (Bob or elsewhere). m apply CA’s public key to Bob’s certificate, get Bob’s public key Bob’s public key K B + digital signature (decrypt) CA public key K CA + K B + - K (K ) B +

Network Security7-36 A certificate contains: r Serial number (unique to issuer) r info about certificate owner, including algorithm and key value itself (not shown) r info about certificate issuer r valid dates r digital signature by issuer

Network Security7-37 Internet Web Security Architecture Client A CA Web Server B K - CA (K + B ) K + B (K AB, R) K AB (R) K AB (m) K - CA (K + B ) Cert Request K+BK+B

Network Security7-38 Internet Web Security Conditions r Clients’ web browsers have built-in CAs. r CAs are trustable r Web servers have certificates in CAs. r Q: What if a server has no certificate? m Example: SSH servers

Network Security7-39 SSH Example r Initial setup: m Trust the first-time connection m Save the server’s public key r Under Linux, generate public key pair: m ssh-keygen Client A Web Server B K + B (K AB, R) K AB (R) K AB (m)

Network Security7-40 Secure Alice:  generates random symmetric private key, K S.  encrypts message with K S (for efficiency)  also encrypts K S with Bob’s public key.  sends both K S (m) and K + B (K S ) to Bob.  Assumption: Public keys are pre-distributed securely  E.g: through CA, or pre-established like SSH  Alice wants to send confidential , m, to Bob. K S ( ). K B ( ). + + K S (m ) K B (K S ) + m KSKS KBKB + Internet KSKS

Network Security7-41 Secure Bob:  uses his private key to decrypt and recover K S  uses K S to decrypt K S (m) to recover m  Alice wants to send confidential , m, to Bob. K S ( ). K B ( ) K S (m ) K B (K S ) + m KSKS KSKS KBKB + Internet K S ( ). K B ( ). - KBKB - KSKS m K S (m ) K B (K S ) +

Network Security7-42 Secure (continued) Alice wants to provide sender authentication message integrity. Alice digitally signs message. sends both message (in the clear) and digital signature. H( ). K A ( ) H(m ) K A (H(m)) - m KAKA - Internet m K A ( ). + KAKA + K A (H(m)) - m H( ). H(m ) compare

Network Security7-43 Secure (continued) Alice wants to provide secrecy, sender authentication, message integrity. Alice uses three keys: her private key, Bob’s public key, newly created symmetric key H( ). K A ( ). - + K A (H(m)) - m KAKA - m K S ( ). K B ( ). + + K B (K S ) + KSKS KBKB + Internet KSKS