ИССЛЕДОВАНИЕ СТРУКТУРЫ НЕЙТРОННОГО ГАЛО В РЕАКЦИИ КВАЗИСВОБОДНОГО РАССЕЯНИЯ ПРОТОНА НА ГАЛО-ЯДРЕ 6 He Г.Е. Беловицкий, В.П.Заварзина, С.В.Зуев, Е.С.Конобеевский,

Slides:



Advertisements
Similar presentations
M3.1 JYFL fission model Department of Physics, University of Jyväskylä, FIN-40351, Finland V.G. Khlopin Radium Institute, , St. Petersburg, Russia.
Advertisements

Ion Beam Analysis techniques:
Unstable vs. stable nuclei: neutron-rich and proton-rich systems
Γ spectroscopy of neutron-rich 95,96 Rb nuclei by the incomplete fusion reaction of 94 Kr on 7 Li Simone Bottoni University of Milan Mini Workshop 1°-
Single Neutron Stripping Reactions for Structural Study of 23 O Ravinder Kumar Department of Physics Kurukshetra University, Kurukshetra Kurukshetra -
The peculiarities of the production and decay of superheavy nuclei M.G.Itkis Flerov Laboratory of Nuclear Reactions, JINR, Dubna, Russia.
RFSS: Lecture 9 Nuclear Reactions
N*(2007) observed at LNS Sendai H. Shimizu Laboratory of Nuclear Science Tohoku University Sendai NSTAR2007, Sep.5-8, 2007, Bonn 1670.
Direct Reactions. Optical model Represent the target nucleus by a potential -- Attenuation length.
Coupled-Channel analyses of three-body and four-body breakup reactions Takuma Matsumoto (RIKEN Nishina Center) T. Egami 1, K. Ogata 1, Y. Iseri 2, M. Yahiro.
F.Sanchez (UAB/IFAE)ISS Meeting, Detector Parallel Meeting. Jan 2006 Low Energy Neutrino Interactions & Near Detectors F.Sánchez Universitat Autònoma de.
Higher Order Multipole Transition Effects in the Coulomb Dissociation Reactions of Halo Nuclei Dr. Rajesh Kharab Department of Physics, Kurukshetra University,
Nuclear and Radiation Physics, BAU, 1 st Semester, (Saed Dababneh). 1 Nuclear Reactions Categorization of Nuclear Reactions According to: bombarding.
25 9. Direct reactions - for example direct capture: Direct transition from initial state |a+A> to final state B +  geometrical.
1 A.I.Ryazanov, E.V.Semenov and A.Ferrari DPA calculations in irradiated graphite collimator materials under 7 TeV and 450 GeV proton beams ,
Ю.Ц.Оганесян Лаборатория ядерных реакций им. Г.Н. Флерова Объединенный институт ядерных исследований Пределы масс и острова стабильности сверхтяжелых ядер.
Lecture 10: Inelastic Scattering from the Proton 7/10/2003
Delta-Sigma experiment First measurement of the cross section ratio in charge-exchange (np) reactions on H 2 /D 2 at 0° and T = 1, 1.2 GeV Dubna, Joint.
Reaction cross sections of unstable nuclei Contents What is reaction cross section (  R )?  R Effective matter density distributions of unstable nuclei.
ИЗМЕРЕНИЕ ДИФФЕРЕНЦИАЛЬНОГО СЕЧЕНИЯ И ВЕКТОРНОЙ АНАЛИЗИРУЮЩЕЙ СПОСОБНОСТИ РЕАКЦИИ УПРУГОГО dp-РАССЕЯНИЯ ПРИ ЭНЕРГИИ 2 ГэВ А.А. Терехин, В.В. Глаголев,
Α - capture reactions using the 4π γ-summing technique Α. Lagoyannis Institute of Nuclear Physics, N.C.S.R. “Demokritos”
Nuclear Level Densities Edwards Accelerator Laboratory Steven M. Grimes Ohio University Athens, Ohio.
The Inverse Kinematics Resonance Elastic Scattering Reaction of 10,11,12 Be+p Liu Yingdu( 刘应都 ) PHD candidate Advisor : Wang Hongwei, Ma Yugang
Cross Sections One of the most important quantities we measure in nuclear physics is the cross section. Cross sections always have units of area and in.
If the Coordinates system is. R r b (impact parameter.
RCNP.08 Breakup of halo nuclei with Coulomb-corrected eikonal method Y. Suzuki (Niigata) 1.Motivation for breakup reactions 2.Eikonal and adiabatic approximations.
Breakup effects of weakly bound nuclei on the fusion reactions C.J. Lin, H.Q. Zhang, F. Yang, Z.H. Liu, X.K. Wu, P. Zhou, C.L. Zhang, G.L. Zhang, G.P.
2. RUTHERFORD BACKSCATTERING SPECTROMETRY Basic Principles.
Inelastic scattering When the scattering is not elastic (new particles are produced) the energy and direction of the scattered electron are independent.
Radiation damage calculation in PHITS
Monday, Sep. 20, 2010PHYS 3446, Fall 2010 Andrew Brandt 1 PHYS 3446 – Lecture #4 Monday, Sep Dr. Brandt 1.Differential Cross Section of Rutherford.
Accelerator Physics, JU, First Semester, (Saed Dababneh). 1 Electron pick-up. ~1/E What about fission fragments????? Bragg curve stochastic energy.
Some aspects of reaction mechanism study in collisions induced by Radioactive Beams Alessia Di Pietro.
NUCLEAR LEVEL DENSITIES NEAR Z=50 FROM NEUTRON EVAPORATION SPECTRA IN (p,n) REACTION B.V.Zhuravlev, A.A.Lychagin, N.N.Titarenko State Scientific Center.
Study of Electromagnetic Interactions of Light Ions in the Framework of the IHEP Ion Program at U70 Serguei Sadovsky, IHEP, Protvino EMIN-2009, Moscow,
NS08 MSU, June 3rd – 6th 2008 Elisa Rapisarda Università degli studi di Catania E.Rapisarda 18 2.
NPD-2009 Conference, ITEP, Moscow, November , Spin structure of the “forward” charge exchange reaction n + p  p + n and the deuteron.
Reaction studies with low-energy weakly-bound beams Alessia Di Pietro INFN-Laboratori Nazionali del Sud NN 2015Alessia Di Pietro,INFN-LNS.
K. Tőkési 1 Institute for Nuclear Research, Hungarian Academy of Sciences (ATOMKI), Debrecen, Hungary, EU ATOMIC DATA FOR INTEGRATED TOKAMAC MODELLING.
1 Neutron Effective Dose calculation behind Concrete Shielding of Charge Particle Accelerators with Energy up to 100 MeV V. E Aleinikov, L. G. Beskrovnaja,
Pion-Induced Fission- A Review Zafar Yasin Pakistan Institute of Engineering and Applied Sciences (PIEAS) Islamabad, Pakistan.
FRAGMENTATION OF RELATIVISTIC 10 C NUCLEI IN NUCLEI EMULSION K. MAMATKULOV JINR, Dubna September.
J-PARC でのシグマ陽子 散乱実験の提案 Koji Miwa Tohoku Univ.. Contents Physics Motivation of YN scattering Understanding Baryon-Baryon interaction SU(3) framework Nature.
Simultaneous photo-production measurement of the  and  mesons on the nucleons at the range 680 – 1500 MeV N.Rudnev, V.Nedorezov, A.Turinge for the GRAAL.
Monday, Jan. 31, 2005PHYS 3446, Spring 2005 Jae Yu 1 PHYS 3446 – Lecture #4 Monday, Jan. 31, 2005 Dr. Jae Yu 1.Lab Frame and Center of Mass Frame 2.Relativistic.
Fragmentation of relativistic 9 Be and 14 N nuclei in nuclear track emulsion D. A. Artemenkov JINR, Dubna BECQUREL Collaboration web site:
The experimental evidence of t+t configuration for 6 He School of Physics, Peking University G.L.Zhang Y.L.Ye.
Systematical Analysis of Fast Neutron Induced Alpha Particle Emission Reaction Cross Sections Jigmeddorj Badamsambuu, Nuclear Research Center, National.
100MeV/u 12 C+ 12 C Scattering at RCNP Weiwei Qu 、 Gaolong Zhang 、 Satoru Terashima 、 Isao Tanihata 、 Chenlei Guo 、 Xiaoyun Le 、 Hoo Jin Ong 、 Harutaka.
Study of repulsive nature of optical potential for high energy 12 C+ 12 C elastic scattering (Effect of the tensor and three-body interactions) Gaolong.
Summer Student Practice, 2009, JINR Dubna1 Neutron spectroscopy by time of flight method and determination of neutron beam Prepared by: Sameh Hassan, Yomna.
Investigation of Coherent Dissociation 10 C Nuclei at an Energy of 1.2 A GeV Mamatkulov Kahramon LHEP, JINR, Dubna JSPI, Uzbekistan EMIN’ October.
1 Jeff Tostevin, Department of Physics Faculty of Engineering and Physical Sciences University of Surrey, United Kingdom Sensitivity of two-nucleon knockout.
Laboratory system and center of mass system
Mean free path and transport parameters from Brueckner-Hartree-Fock
Yuliya Aksyutina for the LAND-R3B collaboration Motivation
Giant Monopole Resonance
Elastic Scattering in Electromagnetism
Nuclear Effects in the Proton-Deuteron Drell-Yan Reaction.
Peripheral collisions Hans-Jürgen Wollersheim
PHL424: Semi-classical reaction theory
Searching for states analogous to the 12C Hoyle state in heavier nuclei using the thick target inverse kinematics technique. Marina Barbui 5/17/2018, Galveston,
Geometry of experimental setup for studies of inverse kinematics reactions with ROOT Students*: Dumitru Irina, Giubega Lavinia-Elena, Lica Razvan, Olacel.
Nuclear Reactions --Part 2
1. Introduction Secondary Heavy charged particle (fragment) production
Summer Students Practice,
PHL424: Rutherford scattering discovery of nucleus
PHL424: Semi-classical reaction theory
Nuclear Reactions.
Catalin Borcea IFIN-HH INPC 2019, Glasgow, United Kingdom
Presentation transcript:

ИССЛЕДОВАНИЕ СТРУКТУРЫ НЕЙТРОННОГО ГАЛО В РЕАКЦИИ КВАЗИСВОБОДНОГО РАССЕЯНИЯ ПРОТОНА НА ГАЛО-ЯДРЕ 6 He Г.Е. Беловицкий, В.П.Заварзина, С.В.Зуев, Е.С.Конобеевский, А.В.Степанов Институт ядерных исследований РАН, Москва Сессия-конференция Секции ядерной физики ОФН РАН «Физика фундаментальных взаимодействий»

Cigar-like Other examples – 11 Li, 14 Be, 8 He Object of investigation – structure of neutron halo Investigation of reactions using beams of radioactive nuclei have extended the area of nuclear physics on nuclei far from the stability line. Many new phenomena characteristic for unstable nuclei, for example nuclei with neutron halo were discovered. Especially interesting are so-called Borromean nuclei - nuclei with two-neutron halo ( 11 Li, 6 He, 14 Be). Dineutron 6 He

Irradiation of nuclear photoemulsions by 6 He beam Flerov Laboratory of Nuclear Reaction (JINR, Dubna) 6 He-beam with energy of 60 MeV Width of PE stack ~ 1600 m Interaction energy MeV Target nuclei – H, C, N, 0, Br, Ag Angular resolution ~ 1º Energy resolution ~ 2-5%

E int =21 MeV 1 H -  =9º; E=3.8 MeV 4 He -  =0.5º; E=15.6 MeV X Y Z Z Interaction of 6 He with 1 H in photoemulsion at energy of MeV Reactions – one- and two-neutron transfer; QFS Secondary particles: 4 He, 1 H, 2 H, 3 H Comparable ranges Trajectory - three-pronged star Restriction – E 4He > 3 MeV E 1-3H > 1 MeV

QFS of proton by constituents (  -n-n) of 6 He Halo projectile 6 He is considered as a system - claster (C) and spectator (S) Then QFS may be denoted as S+C( 1 H, 1 H)C+S where C = 5 He 4 He 2 n 1 n S = 1 n 2 n 4 He 5 He QFS – assumption that incident particle is scattered by a claster while spectator is at rest QFS of proton (projectile p) by dineutron – spectator ( 4 He) is at rest Our case – inverse kinematics QFS of dineutron (projectile 6 He) by proton – spectator ( 4 He) conserves its direction and intrinsic momentum distribution in the projectile In the experiment such event looks like the three-pronged star ( 6 He, 4 He,p) with 4 He track emitting from the interaction point at close to zero angle and with momentum close to 4/6 of momentum of projectile at energy of interaction

Preliminary experimental data on QFS Experiment: E int =15-22 MeV; He =0±1º; p ≤ 10º p 2 n-scattering pn and p 2 n-scattering pn-scattering E He /E 0 E p /E 0

Comparison of experimental data and three-body kinematics with account for momentum of spectator in QFS Elastic limit pn-QFS p 2 n-QFS E p /E 0 E He /E 0 Spectator conserves its direction of motion and intrinsic momentum distribution in projectile

Conclusions Irradiation of PEs has been performed using 6 He beam at 60 MeV Systematic processing of irradiated PEs with goal of obtaining data on QFS of proton by the constituents of halo-nucleus 6 He is started Preliminary data on 6 He-p interaction at energy of MeV are compared with three-body kinematical calculations for QFS A part of data does not contradict with simplified kinematical calculations of QFS of proton by dineutron claster of 6 He

Determination of particle trajectories Three-dimensional scanning of PE is performed at automated setup PAVIKOM at P.N. Lebedev Physical Institute The images of consecutive (with step of several m) PE layers are obtained and transferred to the computer In each layer we select darkening areas (globes) with characteristics inherent for tracks of given charged particle Coordinates (x, y) of centers of mass of all globes in each layer (z-coordinate) are determined and stored Then, the particle trajectories X i (z) and Y i (z) are determined by center-of-mass coordinates in consecutive layers of PE

Two-neutron transfer cross-section G.M.Ter-Akopian et al. 1998; Yu.Ts.Oganessian et al He beam with energy of 151 MeV; 4 He and 1 H targets “..it is found that the “dineutron “ configuration of the 6 He nucleus gives the dominant contribution to the two-neutron transfer cross-section.” Quasi-free capture E.Sauvan, F.M.Marques et al. 2001; N.A.Orr, F.M.Marques He beam with energy of 240 MeV; 1 H target “…non-observation of capture on a di-neutron” “This indicates… that 4 He-n-n (i.e., no compact dineutron component) is the dominant configuration present in 6 He gs.” Structure of neutron halo of 6 He So, even for the most studied 6 He-nucleus it is impossible to draw a final conclusion on the structure of neutron halo. New experiments for various reactions and at various energies are needed.

Study of reactions induced by halo-nuclei in nuclear photoemulsion REACTIONS – NEUTRON TRANSFER, QUASI-FREE SCATTERING BEAM – HALO-NUCLEI (6,8He,11Li,14Be) ENERGY – 3 < E int <15 Mev/nucleon TARGET – PHOTOMULSION (H,C,O,N,Br,Ag)

Reactions used for halo structure determination Two neutron transfer reaction Quasi-free scattering Quasi-free capture 6 He

Determination of the trajectory parameters E int, E 1, E 2,  1,  2 E int =f(E 0,R 0 ) E 1 =f(R 1 ) E 2 =f(R 2 ) The characteristic trajectory corresponding to the given reaction consists of the track of primary particle ( 6 He), interaction point (IP), and trajectories of secondary particles emitting from the interaction point. Then the program determines range (energy) of the primary particle at the interaction point, angles of emission of secondary particles, and ranges (energies) of the secondary particles.

Calculation of QFS kinematics Three-body kinematics: E int =15-22 MeV;  He =0±1º; p ≤ 10º pn-scattering p 2 n-scattering pn and p 2 n-scattering E p /E 0 E He /E 0

Elastic limit pn-QFS p 2 n-QFS p 4 He-QFS p 5 He- QFS Comparison of experimental data and three-body kinematics with account for momentum of spectator in QFS E p /E 0 E He /E 0

Separation of events of two-neutron transfer reaction induced by 6 He in different target nuclei By the ratio of ranges By the opening angle

Interaction of 6 He with 1 H in Photoemulsion at energy of MeV

Single frame 80*60 micron at fixed depth Frames at all depths at fixed (X,Y) form Set of frames

Information on the structure of neutron halo can be obtained from the analysis of transfer reaction, quasi-free scattering and quasi-free capture Two neutron transfer reaction as a probe of halo structure Thus the information on the structure of neutron halo can be directly obtained from the analysis of differential cross section of two-neutron transfer reaction

Тестовое облучение ФЭ в Лаборатории Ядерных Реакций, ОИЯИ Реакция передачи двух нейтронов 6 He+A  4 He+B Пучок 6He – энергия 60 МэВ Толщина стопки ФЭ ~1600 мкм Энергия взаимодействия МэВ Ядра-мишени – H, C, N, 0, Br, Ag

E вз, E 1, E 2,  1,  2, ,разл E вз =f(E 0,R 0 ) E 1 =f(R 1 ) E 2 =f(R 2 )

Реакция передачи двух нейтронов 6 He+ 1 H  4 He+ 3 H Энергия взаимодействия E 0 =37 МэВ

Зависимость пробегов вторичных частиц от угла разлета для реакций упругого рассеяния и 2n-передачи Энергия взаимодействия E 0 =37 МэВ Упругое рассеяние 2n-передача Соотношение пробегов Соотношение углов вылета Компланарность

Траектория события упругого рассеяния 6 He+ 1 H  6 He+ 1 H E вз =32 МэВ УПРУГОЕ РАССЕЯНИЕ Угол разлета - 2,8 º Угол вылета 6 He – 0,8º, Угол вылета 1 H – 2º, Пробег 6 He – > 200 мкм Пробег 1 H – > 200 мкм  1 / 2 =2,5 ПЕРЕДАЧА 2n Угол разлета - 2,8 º Угол вылета 4 He – 0,6º, Угол вылета 3 H – 2,4º, Пробег 4 He > 200 мкм Пробег 3 H = 50 мкм  1 / 2 =4

Траектория события передачи 2n 6 He+ 1 H  4 He+ 3 H E вз =40 МэВ ПЕРЕДАЧА 2n Угол разлета - 63 º Угол вылета 4 He – 17º, Угол вылета 3 H – 46º, Пробег 4 He > 340 мкм Пробег 3 H = 230 мкм  1 / 2 =2,7 УПРУГОЕ РАССЕЯНИЕ Угол разлета - 63 º Угол вылета 6 He – 8º, Угол вылета 1 H – 55º, Пробег 6 He > 340 мкм Пробег 1 H = 140 мкм  1 / 2 =6,8

Заключение  Проведены тестовые облучения ФЭ на пучке 6He  Проведена фотосъемка части облученных ФЭ на установке ПАВИКОМ  Разработаны программы определения траекторий заряженных частиц в ФЭ  Разработаны программы поиска трехлучевых звезд и определения всех параметров реакций, приводящих к их образованию  Начата систематическая обработка экспериментальных данных с целью получения угловых и энергетических распределений реакции 1 H( 6 He, 4 He) 3 H в интервале энергий 6 He МэВ