Galactic Evolution Workshop 2014.6.4-6.6 NAOJ Sachie Arao, Yuhri Ishimaru (ICU) Shinya Wanajo(Riken) Nucleosynthesis of Elements heavier than Fe through.

Slides:



Advertisements
Similar presentations
arvard.edu/phot o/2007/m51/. Confronting Stellar Feedback Simulations with Observations of Hot Gas in Elliptical Galaxies Q. Daniel Wang,
Advertisements

Non-steady-state dust formation in the ejecta of Type Ia supernovae 2013/08/06 Takaya Nozawa (Kavli IPMU, University of Tokyo) Collaborators: Takashi Kozasa.
T.P. Idiart  and J.A. de Freitas Pacheco   Universidade de São Paulo (Brasil)  Observatoire de la Côte d’Azur (France) Introduction Elliptical galaxies.
Ia 型超新星爆発時に おけるダスト形成 野沢 貴也 東京大学数物連携宇宙研究機構(IPMU) 共同研究者 前田啓一 (IPMU), 野本憲一 (IPMU/ 東大 ), 小笹隆司 ( 北大 )
Neutron-capture Elements in M15 Kaori Otsuki (U Chicago), S. Honda, W. Aoki, T. Kajino (NAOJ) J. W. Truran, V. Dwarkadas, A. Medina (U Chicago) G. J. Mathews.
Metal Poor Stars Jeff Cummings Indiana University April 15, 2005.
Astronomy 535 Stellar Structure Evolution. Course Philosophy “Crush them, crush them all!” -Professor John Feldmeier.
Cluster of Excellence: Origin and Structure of the Universe Research Area G: How was the Universe enriched in heavy elements? R. Krücken TU München & MLL.
Center for Stellar and Planetary Astrophysics Monash University Summary prepared by John Lattanzio, Dec 2003 Abundances in NGC6752.
Chemical Signatures of the Smallest Galaxies Torgny Karlsson SIfA, School of Physics, The University of Sydney Collaborators: Joss Bland-Hawthorn and Ralph.
Early evolution of tidal dwarf galaxies Simone Recchi INAF – Trieste Observatory V Estallidos Workshop “Star Formation and Metallicity” Albayzin – Granada.
Neutron Star Formation and the Supernova Engine Bounce Masses Mass at Explosion Fallback.
Dark Matter and Galaxy Formation Section 4: Semi-Analytic Models of Galaxy Formation Joel R. Primack 2009, eprint arXiv: Presented by: Michael.
Modelling Dwarf Galaxies with a Multi-Phase ISM Stefan Harfst 1,2 with: Ch. Theis 3,2 and G. Hensler 3,2 G. Hensler 3,2 1 Rochester Institute of Technology,
Yutaka Komiya (National Astronomical Observatory of Japan) Takuma Suda (NAOJ), Masayuki Y. Fujimoto (Hokkai Gakuen Univ.)
Yutaka Komiya ( Tokyo Univ., RESCEU ) Collaborators Takuma Suda ( Tokyo Univ., RESCEU ) Shimako Yamada ( Hokkaido Univ. ) Masayuki Y. Fujimoto ( Hokkaido.
Cosmic Rays Discovery of cosmic rays Local measurements Gamma-ray sky (and radio sky) Origin of cosmic rays.
Outline  Introduction  The Life Cycles of Stars  The Creation of Elements  A History of the Milky Way  Nucleosynthesis since the Beginning of Time.
Stellar orbits change through interactions with inhomogeneities of gravitational potential (molecular clouds, spiral arms, bar) Resonant interactions.
Exploring the orbits of the stars from a blind chemical tagging experiment Borja Anguiano Macquarie University, Sydney, Australia.
New Constraints on Neutron- Capture Nucleosynthesis Processes Inese I. Ivans California Institute of Technology Hubble Fellows Symposium April 7, 2005.
Supernovae, Nucleosynthesis, and Constraints on Chemical Evolution Jim Truran Astronomy and Astrophysics Enrico Fermi Institute University of Chicago and.
AGN downsizing は階層的銀河形成論で 説明できるか? Motohiro Enoki Tomoaki Ishiyama (Tsukuba Univ.) Masakazu A. R. Kobayashi (Ehime Univ.) Masahiro Nagashima (Nagasaki Univ.)
The origin of the most iron - poor star Stefania Marassi in collaboration with G. Chiaki, R. Schneider, M. Limongi, K. Omukai, T. Nozawa, A. Chieffi, N.
銀河進化とダスト 平下 博之 (H. Hirashita) (筑波大学). 1.Importance of Dust in Galaxies 2.Evolution of Dust Amount 3.Importance of Size Distribution 4.Toward Complete.
TAUP2007 Sep , 2007 Sendai, Japan Shiou KAWAGOE The Graduate University for Advanced Studies (SOKENDAI) / NAOJ JSPS Research Fellow T. Kajino, The.
1 GRB, SN and identification of the hosts GRB, SN and identification of the hosts Valentina Grieco by means of evolution models chemical Trieste, 28 nov.
化学組成に刻まれた Ia 型超新星の多様 性 辻本拓司 ( 国立天文台 )  chemical imprint on stars of supernova nucleosynthesis in general, the issue about Type II supernovae  prompt.
Presolar grains and AGB stars Maria Lugaro Sterrenkundig Instituut University of Utrecht.
Abundance patterns of r-process enhanced metal-poor stars Satoshi Honda 1, Wako Aoki 2, Norbert Christlieb 3, Timothy C. Beers 4, Michael W.Hannawald 2.
THE FIRST STARS: THE FIRST STARS: Uranium-rich metal-poor star Uranium-rich metal-poor star CS CS
Abundance Patterns to Probe Stellar Nucleosynthesis and Chemical Evolution Francesca Primas.
The chemical evolution of the peculiar “Globular Cluster” Omega Centauri Andrea Marcolini (Uclan, Central Lancashire) Antonio Sollima (Bologna University)
Stellar Feedback Effects on Galaxy Formation Filippo Sigward Università di Firenze Dipartimento di Astronomia e Scienza dello Spazio Japan – Italy Joint.
HST Observations of Low Z Stars HST Symposium, Baltimore May 3, 2004 Collaborators: Tim Beers, John Cowan, Francesca Primas, Chris Sneden Jim Truran.
Different Kinds of “Novae” I. Super Novae Type Ia: No hydrogen, CO WD deflagration --> detonation Type Ia: No hydrogen, CO WD deflagration --> detonation.
Renaissance: Formation of the first light sources in the Universe after the Dark Ages Justin Vandenbroucke, UC Berkeley Physics 290H, February 12, 2008.
AIMS OF G ALACTIC C HEMICAL E VOLUTION STUDIES To check / constrain our understanding of stellar nucleosynthesis (i.e. stellar yields), either statistically.
Lesson 13 Nuclear Astrophysics. Elemental and Isotopic Abundances.
Abel, Bryan, and Norman, (2002), Science, 295, 5552 density molecular cloud analog (200 K) shock 600 pc.
極めて金属量の低い星形成ガス雲 中でのダスト成長と低質量星の形 成 Nozawa et al. (2012, ApJ, 756, L35) 野沢 貴也( Takaya Nozawa ) 東京大学 国際高等研究所 カブリ数物連携宇宙研究機構 2012/09/19 共同研究者 : 小笹 隆司(北海道大学)
Marta Gavilán Bouzas Mercedes Mollá Lorente Estallidos IV, Granada
Gas mixing and Star formation by shock waves and turbulence Claudio Melioli Elisabete M. de Gouveia Dal Pino (IAG-USP)
Formation of Dust in Various Types of Supernovae Takaya Nozawa IPMU (Institute for the Physics and Mathematics of the Universe, Univ. of Tokyo) Collaborators.
Basic Concepts on Chemical Evolution Cesare Chiosi Department of Astronomy University of Padova, Italy.
Feedback Observations and Simulations of Elliptical Galaxies –Daniel Wang, Shikui Tang, Yu Lu, Houjun Mo (UMASS) –Mordecai Mac-Low (AMNH) –Ryan Joung (Princeton)
野口正史 (東北大学).  Numerical simulation Disk galaxy evolution driven by massive clumps  Analytical model building Hubble sequence.
Low-Mass Star Formation, Triggered by Supernova in Primordial Clouds Masahiro N. Machida (Chiba University) Kohji Tomisaka (NAOJ) Fumitaka Nakamura (Niigata.
Chemical Evolution Models forDwarf Spheroidal Galaxies Gustavo A. Lanfranchi Núcleo de Astrofísica Teórica - Universidade Cruzeiro do Sul Chemical evolution.
Selected Topics in Astrophysics
Evolution of Newly Formed Dust in Population III Supernova Remnants and Its Impact on the Elemental Composition of Population II.5 Stars Takaya Nozawa.
Stellar Spectroscopy and Elemental Abundances Definitions Solar Abundances Relative Abundances Origin of Elements 1.
Center for Stellar and Planetary Astrophysics Monash University Summary prepared by John Lattanzio, Oct 2003 Abundances in M92.
1 Radio – FIR Spectral Energy Distribution of Young Starbursts Hiroyuki Hirashita 1 and L. K. Hunt 2 ( 1 University of Tsukuba, Japan; 2 Firenze, Italy)
SPH Simulations of the Galaxy Evolution NAKASATO, Naohito University of Tokyo.
Improved Chemical Evolution Model for the Early Galaxy Evolution 中里直人 東大天文.
Ryohei Fukuda 1, Motoaki Saruwatari 1, Masa-aki Hashimoto 1, Shin-ichiro Fujimoto 2 1 Department of Physics, Kyushu University, Fukuoka 2 Department of.
The roles of Type Ia SN rates in galactic chemical evolution
R-PROCESS SIGNATURES IN METAL-POOR STARS
Star Formation Nucleosynthesis in Stars
Rebecca Surman Union College
Mysterious Abundances in Metal-poor Stars & The ν-p process
N. Tominaga, H. Umeda, K. Maeda, K. Nomoto (Univ. of Tokyo),
Lecture 11: Age and Metalicity from Observations
Galactic Astronomy 銀河物理学特論 I Lecture 3-4: Chemical evolution of galaxies Seminar: Erb et al. 2006, ApJ, 644, 813 Lecture: 2012/01/23.
Supernova Nucleosynthesis and Extremely Metal-Poor Stars
Nucleosynthesis in Early Massive Stars: Origin of Heavy Elements
Pop III Black-hole-forming supernovae and Abundance pattern of Extremely Metal Poor Stars Hideyuki Umeda (梅田秀之) Dept. of Astronomy Univ.of Tokyo.
Takuma Suda, Asao Habe, Masayui Fujimoto (Hokkaido Univ.)
Nucleosynthesis in Pop III, Massive and Low-Mass Stars
Presentation transcript:

Galactic Evolution Workshop NAOJ Sachie Arao, Yuhri Ishimaru (ICU) Shinya Wanajo(Riken) Nucleosynthesis of Elements heavier than Fe through 3D inhomogeneous chemical evolution of the halo 銀河系ハローの三次元非一様化学進化による鉄より重い元素の合成

Ⅰ. Motivation - Problem posed by observational abundance -

Observational traits of chemical abundance α-elementsFe-peak elementsn-capture elements? Mn Zn observational data : from SAGA database Sr Eu [Fe/H] − clues for the Galactic Chemical Evolution (GCE)− What kind of GCE model can explain consistently these different trends in abundance? [El/Fe] [El/Fe] [Fe/H] Mg O different trends & small dispersion large dispersion

[Fe/H] Consistent GCE explanation for Zn and Sr ? Fe-peak elements (Zn)n-capture elements? (Sr) observational data: from SAGA database examine inhomogeneous model supposed from r-process elements spatial inhomogeneity of abundance ?? (inhomogeneous model) homogeneous abundance? (homogeneous model) difficult to explain different trends of Fe-peak elements especially Zn can explain small dispersion & trend of Zn as reproducing large dispersion of r- process elements? the early halo [Zn/Fe] [Sr/Fe] large dispersion trend & small dispersion

Ⅱ. Methods Modeling of 3D inhomogeneous GCE

Modeling of GCE : Inhomogeneous Model 2.5kpc 100cells O: outflow m S : stellar mass m G : gas density τ M : lifetime of star X i : ratio of element I in gas ★ a system : (2.5kpc) 3 cube of the halo (100 3 cells) ★ reproduce spatial structure of chemical abundance ★ Star formation: choose cell with calculated probability ( ∝ m G ) ★ SNe: distribute yield to surrounding cells at calculated R SN.  star formation : Ψ=νm G [M ◉ /Gyr]  outflow: output of gas from the system  radius of SNe shock wave front R SN :  initial mass fanction(IMF):Φ(M)=AM -X X=1.35(Salpeter) O=om G [M ◉ /Gyr] o [Gyr -1 ]:outflow efficiency ν [Gyr -1 ]: star formation efficiency function of m G, metallisity, and E explosion R SN ~ [pc] ※ parameters ν[Gyr -1 ], o[Gyr -1 ]

parameter choice by metallisity distribution star formation efficiency ν=0.07[Gyr -1 ] outflow efficiency o=0.45[Gyr -1 ]  parameters which reproduce metallisity distribution of the halo: Model ー Observation (An et al. 2012) ・・・

Inhomogeneous evolution of the halo (cross section of the system) inhomogeneity of ISM occurs by different yields of each SNe, and become more homogeneous through the time gas density of cells [M ◉ /cell] gas is swept up by shock wave age of the Galaxy : 20 Myr 100 Myr 500 Myr 2500 Myr

Ⅲ. A Possible Solution for the issue  explanation for Zn? -Electron Capture SN-

Possible Solution for Znproblem: ECSN  ECSN model (considering SNe hydrodynamics) (Wanajo et al. 2011, 2013)  8.8M ◉ ECSN produce Zn-Zr sufficiently  yield: Zn…higher than Fe Fe…~10^-1 lower than SNII explain observational trend of Zn with ECSN yield?? → consider SNII+ECSN Zn Co Cr Mn Fe Wanajo solar fraction ECSN yield  ECSN lower limit →9M ◉  E explosion →E ECSN =E SNII =10^51[erg]  only ECSN is considered as origin for Sr Supposition & Approximation in GCE model Electron Capture Supernova ( ECSN ) : a part of 8-10M ◉ ( ※ lower limit of ECSN unknown) O-Ne- Mg core envelope(H,He)  O-Ne-Mg core gravitationally collapse by electron capture  long lifetime, low E explosion ~10^50erg (<10^51erg(SNII)) Sr

Ⅳ. Results and Discussions  Zn: SNII & SNII + ECSN, comparison with homogeneous  Zn & Sr : SNII + ECSN

SNeIISNeII + ECSN Zn Result① : Zn (noECSN&ECSN) [Fe/H] [Zn/Fe] [Fe/H] [Zn/Fe]  SNII+ECSN→ can explain large values at low [Fe/H] and the decreasing trend  effect of low Fe yield and higher Zn yield than Fe of ECSN  homogeneous model : shows increasing trend mean abundance → ECSN effect appears at high [Fe/H] (=later) ※ [Fe/H] ∝ time ○ number density of model star + observation (SAGA database) ν=0.07 [Gyr -1 ] o=0.45 [Gyr -1 ] ECSN: M low =9.0

ZnSr Result② : Zn & Sr [Fe/H] [Fe/H] [Zn/Fe]  consistently explain trend of Zn and large dispersion of Sr  need to examine other origins of Sr & approximations SNeII + ECSN ν=0.07 [Gyr -1 ] o=0.45 [Gyr -1 ] ○ number density of model star + observation (SAGA database) ECSN: M low = [Sr/Fe]

Ⅴ. Summary  make a 3D inhomogeneous GCE model  As considering ECSN, Inhomogeneous model can explain trend of Zn better than homogeneous model  explain consistently the trend of Zn and large dispersion of Sr in observation  Future Plan: examine other origins of Sr (r-process), parameters & approximations

Reference Prantzos, N. 2008, “An Introduction to Galactic Chemical Evolution” Argast, D., Samland, M., Thielemann, F.-K., & Gerhard, O.E. 2000, Astronomy & Astrophysics, Volume 356, pp Sneden, C., Cowan, J. J. 2003, Science, Volume 299, p.7 Norris et al. 2001, THE ASTROPHYSICAL JOURNAL, 561: Francois et al. 2004, A&A 421, 613–621 Nomoto et al. 1997, nphysa, 616, 79 Cioffi et al. 1988, THE ASTROPHYSICAL JOURNAL, 334: