FE-I4 Chip Development for Upgraded ATLAS Pixel Detector at LHC Marlon Barbero, Bonn University (for the FE-I4 Collaboration) Pixel 2010, Grindelwald Switzerland,

Slides:



Advertisements
Similar presentations
The ATLAS Pixel Detector
Advertisements

Token Bit Manager for the CMS Pixel Readout
SKIROC New generation readout chip for ECAL M. Bouchel, J. Fleury, C. de La Taille, G. Martin-Chassard, L. Raux, IN2P3/LAL Orsay J. Lecoq, G. Bohner S.
SEU tolerant cells developed for the FEI4 chip Patrick Breugnon, Denis Fougeron, Mohsine Menouni, Alexandre Rozanov CPPM-CNRS-Université de la mediterranée-Marseille.
5ns Peaking Time Transimpedance Front End Amplifier for the Silicon Pixel Detector in the NA62 Gigatracker E. Martin a,b J. Kaplon b, A. Ceccucci b, P.
Timepix2 power pulsing and future developments X. Llopart 17 th March 2011.
The FE-I4 Pixel Readout System-on-Chip Resubmission to accommodate the Fast Track IBL plans Vladimir Zivkovic National Institute for Subatomic Physics.
ACES Workshop 3-4 March, 2009 W. Dabrowski Serial power circuitry in the ABC-Next and FE-I4 chips W. Dabrowski Faculty of Physics and Applied Computer.
14-5 January 2006 Luciano Musa / CERN – PH / ED General Purpose Charge Readout Chip Nikhef, 4-5 January 2006 Outline  Motivations and specifications 
A Serializer ASIC for High Speed Data Transmission in Cryogenic and HiRel Environment Tiankuan Liu On behalf of the ATLAS Liquid Argon Calorimeter Group.
Switched capacitor DC-DC converter ASICs for the upgraded LHC trackers M. Bochenek 1,2, W. Dąbrowski 2, F. Faccio 1, S. Michelis 1 1. CERN, Conseil Européen.
DEPFET Electronics Ivan Peric, Mannheim University.
Pierpaolo Valerio.  CLICpix is a hybrid pixel detector to be used as the CLIC vertex detector  Main features: ◦ small pixel pitch (25 μm), ◦ Simultaneous.
ATLAS Pixel Upgrade Phase 0 (IBL) ACES Workshop , CERN T. Flick University Wuppertal for the IBL collaboration.
FE-I4 Chip Design Marlon Barbero, Bonn University Vertex 2009, Putten, The Netherlands Feb. 17 th 2009.
Communication & Data Flow Marlon Barbero, Bonn University FE-I4 Review, CERN Nov. 3 rd - 4 th 2009.
Filip Tavernier Karolina Poltorak Sandro Bonacini Paulo Moreira
Phase-1 Design. i PHC Phase /04/2008 System Overview Clock, JTAG, sync marker and power supply connections Digital output.
OVERVIEW OF THE PRE-FEI4 PROTOTYPE A. Mekkaoui On behalf of the FEI4 collaboration (BONN, CPPM, GENOVA, LBNL, NIKHEF)‏
SLHC SG: ATLAS Pixel G. Darbo - INFN / Genova SLHC SG, July 2004 ATLAS Pixel at SLHC G. Darbo - INFN / Genova Talk overview: A table with different High.
Fully depleted MAPS: Pegasus and MIMOSA 33 Maciej Kachel, Wojciech Duliński PICSEL group, IPHC Strasbourg 1 For low energy X-ray applications.
Laura Gonella – University of Bonn – 27/09/20111 The Shunt-LDO regulator for powering the upgraded ATLAS pixel detector Laura Gonella University of Bonn.
Specifications & motivation 2  Lowering integration time would significantly reduce background  Lowering power would significantly reduce material budget.
1 Development of the input circuit for GOSSIP vertex detector in 0.13 μm CMOS technology. Vladimir Gromov, Ruud Kluit, Harry van der Graaf. NIKHEF, Amsterdam,
L.ROYER – TWEPP Oxford – Sept The chip Signal processing for High Granularity Calorimeter (Si-W ILC) L.Royer, J.Bonnard, S.Manen, X.Soumpholphakdy.
Valerio Re, Massimo Manghisoni Università di Bergamo and INFN, Pavia, Italy Jim Hoff, Abderrezak Mekkaoui, Raymond Yarema Fermi National Accelerator Laboratory.
Technology Overview or Challenges of Future High Energy Particle Detection Tomasz Hemperek
65 nm CMOS analog front-end for pixel detectors at the HL-LHC
Thanushan Kugathasan, CERN Plans on ALPIDE development 02/12/2014, CERN.
BTeV Hybrid Pixels David Christian Fermilab July 10, 2006.
FE-I4 pixel readout chip and IBL module Marlon Barbero Bonn University On behalf of ATLAS FE-I4 / IBL collaboration Vertex 2011 Workshop, Rust - Austria,
Development of the FE-I4 pixel readout IC for b-Layer Upgrade & Super-LHC Michael Karagounis on behalf of the ATLAS PIXEL Upgrade FE-I4 collaboration.
Erik Jonsson School of Engineering & Computer Science Redundant SAR ADC Architecture and Circuit Techniques for ATLAS LAr Phase-II Upgrade Ling Du 1, Hongda.
Peter Fischer, Bonn UniversityPixel 2000, Genova, June 5-8, 2000 Pixel electronics for ATLAS Peter Fischer, Bonn university for the ATLAS pixel collaboration.
TIMELINE FOR PRODUCTION 2  Need to be ready for production end next year  => submission of final mask set ~September 2015  Would like one more iteration.
BeamCal Electronics Status FCAL Collaboration Meeting LAL-Orsay, October 5 th, 2007 Gunther Haller, Dietrich Freytag, Martin Breidenbach and Angel Abusleme.
Motivation for 65nm CMOS technology
MIMO  3 Preliminary Test Results. MIMOSTAR 2 16/05/2007 MimoStar3 Status Evaluation of MimoStar2 chip  Test in Laboratory.
SuperKEKB 3nd open meeting July 7-9, 2009 Hans-Günther Moser MPI für Physik Sensor and ASIC R&D Sensor Prototype Production: running, ASICs: Switcher,
The FE-I4 Pixel Readout System-on-Chip for ATLAS Experiment Upgrades Tomasz Hemperek on behalf of ATLAS Pixel Collaboration.
FE-I4 chip for ATLAS Mohsine Menouni, Marseille group on behalf of the ATLAS PIXEL Upgrade FE-I4 collaboration 8th International Meeting on Front-End Electronics.
M. TWEPP071 MAPS read-out electronics for Vertex Detectors (ILC) A low power and low signal 4 bit 50 MS/s double sampling pipelined ADC M.
FPIX2: A rad-hard pixel readout chip for BTeV David Christian Fermilab Homestead September 14, 2000 Vertex 2000 f.
VMM Update Front End ASIC for the ATLAS Muon Upgrade V. Polychronakos BNL RD51 - V. Polychronakos, BNL10/15/131.
SEU tolerant latches design for the ATLAS pixel readout chip Mohsine Menouni, Marseille group On behalf of the ATLAS PIXEL Upgrade FE-I4 collaboration.
R. Kluit Nikhef Amsterdam R. Kluit Nikhef Amsterdam Gossopo3 3 rd Prototype of a front-end chip for 3D MPGD 1/27/20091GOSSIPPO3 prototype.
RD53 1.  Full/large demonstrator chip submission ◦ When: 2016 A.Early 2016: If chip must have been fully demonstrated in test beams for TDRs to be made.
Technical status of the Gossipo-3 : starting point for the design of the Timepix-2 March 10, Vladimir Gromov NIKHEF, Amsterdam, the Netherlands.
Ideas on MAPS design for ATLAS ITk. HV-MAPS challenges Fast signal Good signal over noise ratio (S/N). Radiation tolerance (various fluences) Resolution.
Pixel structure in Timepix2 : practical limitations June 15, Vladimir Gromov NIKHEF, Amsterdam, the Netherlands.
1 Test results of the SEU tolerant latches 22 sept 2008 M. Barbero a,*, D. Arutinov a, R. Beccherle b, P. Breugnon d, R. Ely c, D. Fougeron d, M. Garcia-Sciveres.
Plans 2009/2010 CPPM 9 June 2009 A.Rozanov 1 Introduction Preparation FE-I4 Preparation FE-TC4-Proto Tests CPPM FE-I4-Proto Tests au PS CERN en 2009.
Data Handling Processor v0.1 Preliminary Test Results - August 2010 Tomasz Hemperek.
FE-I4 chip development status ATLAS Upgrade, R.Kluit.
FE-I4 Architecture & Performance Marlon Barbero, Universität Bonn 2 nd ATLAS CMS Electronics for SLHC, CERN Mar. 04 th 2009.
GOSSIPO-3: Measurements on the Prototype of a Read- Out Pixel Chip for Micro- Pattern Gas Detectors André Kruth 1, Christoph Brezina 1, Sinan Celik 2,
ATLAS Pixel Upgrade G. Darbo - INFN / Genova LHCC- CERN 1/76/2008 o Pixel/B-layer Developments LHCC Upgrade Session CERN, 1 / 7 / 2008 G. Darbo - INFN.
End OF Column Circuits – Design Review
Valerio Re Università di Bergamo and INFN, Pavia, Italy
Digital FE-TC4-DC tier for 3D ATLAS pixel at sLHC
Pixel front-end development
Charge sensitive amplifier
LHC1 & COOP September 1995 Report
FBK / INFN Roma, November , 17th 2009 G. Darbo - INFN / Genova
Digital readout architecture for Velopix
HV-MAPS Designs and Results I
BESIII EMC electronics
OmegaPix 3D IC prototype for the ATLAS upgrade SLHC pixel project 3D Meeting 19th March, 2010 A. Lounis, C. de La Taille, N. Seguin-Moreau, G.
Preliminary design of the behavior level model of the chip
Presentation transcript:

FE-I4 Chip Development for Upgraded ATLAS Pixel Detector at LHC Marlon Barbero, Bonn University (for the FE-I4 Collaboration) Pixel 2010, Grindelwald Switzerland, Sept. 6 th -10 th 2010

Marlon Barbero, FE-I4 Chip, Pixel2010, Grindelwald Switzerland, Sept. 7 th Content Upgrades: IBL / sLHC.  FE-I4, new ATLAS pixel Front-End for IBL & sLHC. FE-I4A overview. Analog pixel. Digital pixel and digital Double-Column. Milestones and conclusion.

Marlon Barbero, FE-I4 Chip, Pixel2010, Grindelwald Switzerland, Sept. 7 th FE-I4 for IBL & sLHC IBL (~2016): inserted layer in current pixel detector. Present beam pipe & B-Layer Existing B-layer New beam pipe IBL mounted on beam pipe FE-I4 - All Silicon. - Long Strips/ Short Strips / Pixels. - Pixels: - 2 or 3 fixed layers at ‘large’ radii (large area at 16 / 20 / 25 cms?) -2 removable layers at ‘small’ radii sLHC tentative layout (~2020): 4-5 pixel layers, small radii / large(r) radii (note: Discussion on boundary pixel / short strips, ID layout…). ATLAS Pixel Detector 3 barrel layers / 3 end-caps end-cap: z± 49.5 / 58 / 65 cm barrel: r~ 5.0 / 8.8 / 12.2 cm see F. Hügging, Monday Iourii Gusakov

Marlon Barbero, FE-I4 Chip, Pixel2010, Grindelwald Switzerland, Sept. 7 th Motivation to re-design the FE Need for a new FE? Smaller inner layer radius + potential luminosity increase  higher hit rate.  Current FE-I3 column-drain architecture saturated.  FE-I4 new digital architecture: local regional memories, (stop moving hits around unless RO).  FE-I4 has smaller pixel size (reduced cross-section).  Technology 130nm: Higher integration density for digital circuits, radiation-hardness (no Enclosed Layout Transistor), availability on timescales of our experiments. FE-I3  FE-I4 Hit prob. / DC Inefficiency [%] LHC IBL sLHC FE-I3 at r=3.7 cm! The “inefficiency wall” μm  130 nm

Marlon Barbero, FE-I4 Chip, Pixel2010, Grindelwald Switzerland, Sept. 7 th Future Thin FE-I4-Based Module (& Consequences for FE-I4) FE-Chip Sensor Flex ) Big chip (periphery on one side of module). 2) Reduce size of periphery (2.8 mm  2 mm). 3) Thin down FE chips (190 μm  90 μm). 4) Thin down the sensor (250 μm  200 μm)? 5) Less cables (powering scheme)? 5 Big FE (~2x2cm!) with increased active area: from less than 75 % to ~90 %:  Reduced periphery; bigger IC; cost down for sLHC (main driver is flip-chip costs per chip). No Module Controller Chip:  More digital functionality in the IC. Power:  Analog design for reduced currents; decrease of digital activity (digital logic sharing for neighbor pixels); new powering concepts. 8 metal layers [2 thick Alu.]  power routing. challenging: power (routing, start-up), clk. distrib., simulation / verification, yield 4 see L. Gonella, Thursday

Marlon Barbero, FE-I4 Chip, Pixel2010, Grindelwald Switzerland, Sept. 7 th Target Specifications for FE-I4 Rad.-hardness: >250 MRad ionizing dose (FE-I3: >50 Mrad). Minimal guidelines: no ELT, minimal size and guard rings only for analog & sensitive digital circuitry. DC leakage current tolerant to > 100 nA. ToT coded on 4 bits. FE-I3FE-I4 Pixel Size [μm 2 ]50×40050×250 Pixel Array18×16080×336 Chip Size [mm 2 ]7.6× ×19.0 Active Fraction74 %89 % Analog Current [μA/pix]2610 Digital Current [μA/pix]1710 Analog Voltage [V] Digital Voltage [V]21.2 pseudo-LVDS out [Mb/s]40160 biggest in HEP to date analog / digital power tuned for IBL occupancy

Marlon Barbero, FE-I4 Chip, Pixel2010, Grindelwald Switzerland, Sept. 7 th FE-I4A FE-I4A: – Full scale prototype. – Many test features provided. – Submitted August – Wafer ship date September 14 th. Test pads 336×80 pixel array Periphery IO pads 16.8 mm 2 mm 20.2 mm

Marlon Barbero, FE-I4 Chip, Pixel2010, Grindelwald Switzerland, Sept. 7 th pixel array: 336×80 pixels periphery digital 4-pix (PDR) analog 1-pix (FEND) 4-pixel regionEODCL DDC & DC PowerDOBEOCHLPadsCLKGENCMD DCDCNFGREGDACsCREF StopMode, CalPuls, InMUX, EFUSE, AltComp… + Integration & Verification IOMux+ Bypass

Marlon Barbero, FE-I4 Chip, Pixel2010, Grindelwald Switzerland, Sept. 7 th Analog Pixel In FE-I4_proto1 (FE-I4 prototype submitted in 2008): 2-stage architecture optimized for low power, low noise, fast rise time.  regul. casc. preamp. nmos input.  folded casc. 2 nd stage pmos input.  Additional gain, Cc/Cf2~6.  2 nd stage decoupled from leakage related DC potential shift.  Cf1~17fF (~4 MIPs dyn. range). 13b configuration:  4 FDAC: tuning feedback current.  5 TDAC: tuning of discriminator threshold.  2 Local charge injection circuitry.  1 Hit Enable.  1 HitBus / IleakMonitor 50  m 150  m Preamp Amp2 FDAC TDAC Config Logic discri

Marlon Barbero, FE-I4 Chip, Pixel2010, Grindelwald Switzerland, Sept. 7 th Noise and Radiation Results a)ENC on “Collaboration Proto 1” before and after irradiation (200 Mrad) b)Measured ENC for pixels with and without C load c)Simulated ENC and 10 µA/pixel (preamp-amp2-comparator) Low Current (10µA) (loaded ~400 fF) ~ 65 e ~ 90 e (10 µA) 200Mrad, C load ~400fF a) b) c) 20 ns timewalk for 2 ke - < Qin < 52 ke - & 1.5 ke - C d =0.4pF & I L =100nA ENC[e - ] C d [F] Q in [C] t LE [s] 100f200f300f k 20k30k40k I L = 0 nA 20n 10n 0 I L =100 nA

Marlon Barbero, FE-I4 Chip, Pixel2010, Grindelwald Switzerland, Sept. 7 th Digital Pixel: Regional Architecture local storage Store hits locally in region until L1T. Only 0.25% of pixel hits are shipped to EoC  DC bus traffic “low”. Each pixel is tied to its neighbors -time info- (clustered nature of real hits). Small hits are close to large hits! To record small hits, use position instead of time. Handle on TW. low traffic on DC bus Consequences: Spatial association of digital hit to recover lower analog performance. Lowers digital power consumption (below 10 μW / pixel at IBL occupancy). Physics simulation  Efficient architecture. disc. top left disc. bot. left disc. top right disc. bot. right 5 ToT memory /pixel 5 latency counter / region hit proc.: TS/sm/big/ToT Read & Trigger Neighbor Token L1TRead Digital Region 4-Pixel Unit

Marlon Barbero, FE-I4 Chip, Pixel2010, Grindelwald Switzerland, Sept. 7 th Performance / Efficiency IBL: charge sharing in Z comparable to phi Memories SimulationAnalytical IBL10xLHCIBL10xLHC %2.19%0.029%2.25% %0.65%0.003%0.57% 7 <0.01%0.16%<0.01%0.13% η=0 Mean ToT = 4 0.6% Regional Buffer IBL rate, pile-up inefficiency is the dominant source of inefficiency Inefficiency: Pile-up inefficiency (related to pixel x-section and return to baseline behavior of analog pixel)  ~ 0.5%. Regional buffer overflow  ~0.05%. Inefficiency under control for IBL occupancy.

Marlon Barbero, FE-I4 Chip, Pixel2010, Grindelwald Switzerland, Sept. 7 th Pixel Layout Note: Digital ground tied to substrate, mixed signal environment BUT digital region placed in “T3” deep n-well. Preamp Amp2 FDAC TDAC Config Logic discri 50  m 250  m synthezised digital region (1/4 th )

Marlon Barbero, FE-I4 Chip, Pixel2010, Grindelwald Switzerland, Sept. 7 th Test Chip Submission FE-I4-P1 LDO Regulator Charge Pump Current Reference DACs Control Block Capacitance Measurement 3mm 4mm 61x14 array SEU test IC 4-LVDS Rx/Tx ShuLDO +trist LVDS/LDO/10b-DAC turboPLL : PLL core + PRBS + 8b10b coder + LVDS driv low power discri.

Marlon Barbero, FE-I4 Chip, Pixel2010, Grindelwald Switzerland, Sept. 7 th Schedule and more information Schedule: – FE-I4A submitted beginning August – FE-I4A end September – Test setup readiness ramping-up, on time for IC back. – Tests: Wafer, single-chip, bump-bonded (planar, 3D, diamond), irrad… Few references: – “Development of the ATLAS FE-I4 pixel readout IC for b-layer Upgrade and Super-LHC”, M. Karagounis et al, proceedings of TWEPP – “Design and Measurements of SEU tolerant latches”, M. Menouni et al, proceedings of TWEPP – “New ATLAS Pixel Front-End IC for Upgraded LHC Luminosity”, M. Barbero et al, NIM A 604 (2009). – “Digital Architecture and Interface of the New ATLAS Pixel Front-End IC for Upgraded LHC Luminosity”, D. Arutinov et al, IEEE Trans. Nucl. Sci. 56, 388 (2009). – “An Integrated Shunt-LDO Regulator for Serial Powered Systems”, M. Karagounis et al, Proceedings of the 35th European Solid-State Circuits Conference, – “Charge Pump Clock Generation PLL for the Data Output Block of the Upgraded ATLAS Pixel Front-End in 130 nm CMOS”, A. Kruth et al, Proceedings TWEPP – “Low Power Discriminator for ATLAS Pixel Chip”, M. Menouni et al, proceedings of TWEPP – “FE-I4 ATLAS Pixel Chip Design”, M. Barbero et al, Proceedings of Science, Vertex see M. Backhaus, Poster Thursday plan for FE-I4B (= FE-I4 for IBL) in fall 2011

Marlon Barbero, FE-I4 Chip, Pixel2010, Grindelwald Switzerland, Sept. 7 th FE-I4A Collaboration Collaborate remotely using Cliosoft.com platform. Participating institutes: Bonn: D. Arutinov, M. Barbero, T. Hemperek, A. Kruth, M. Karagounis. CPPM: D. Fougeron, F. Gensolen, M. Menouni. Genova: R. Beccherle, G. Darbo. LBNL: S. Dube, D. Elledge, J. Fleury (LAL), M. Garcia-Sciveres, D. Gnani, F. Jensen, A. Mekkaoui. NIKHEF: V. Gromov, R. Kluit, J.D. Schipper, V. Zivkovic FE-I3 FE-I4A

Marlon Barbero, FE-I4 Chip, Pixel2010, Grindelwald Switzerland, Sept. 7 th backup BACKUP SLIDES

Marlon Barbero, FE-I4 Chip, Pixel2010, Grindelwald Switzerland, Sept. 7 th pixel array: 336×80 pixels 4-pixel region periphery + Integration + Verification analog synthesized synthes -ized analog synthes -ized analog synthes -ized analog digital analog

From DC to FIFO DC 6b Region Add 8b Data 20b Hamming Decoder From Columns Event Builder Hamming Encoder Data Switch Read out Control Header Fifo 8 places 3 * 12 Bit Word 0 Word 1 Word 2 8 Bits12 Bits 36 Bits Read Busy WriteFull ServiceRead Back

Marlon Barbero, FE-I4 Chip, Pixel2010, Grindelwald Switzerland, Sept. 7 th Zoom1 Test pads 250×50µm 2 pixel ~150×50µm 2 analog pixel 4-pixel PDR Alignment mark Double-Column 0 DC bus

Marlon Barbero, FE-I4 Chip, Pixel2010, Grindelwald Switzerland, Sept. 7 th Zoom3 EOCHL DOB CLKGEN IOMUX CMD DCD CNFGREG IO pads

Marlon Barbero, FE-I4 Chip, Pixel2010, Grindelwald Switzerland, Sept. 7 th Yield Estimated from: – Small analog test chips. – 8 fully tested wafers of Medipix 3 ICs, assuming same defect density for synthesized logic. Expect of order ~39% digitally perfect chips. Yield enhancement: – Triple redundant read tokens. – Hamming coded pixel data and address (w. minimal # of gates). – Redundant configuration shift register.  Fully functional chips yield might be as high as 76%. (with isolated dead pixels at level <0.1%).

Marlon Barbero, FE-I4 Chip, Pixel2010, Grindelwald Switzerland, Sept. 7 th Preamp. & Leakage Compensation I_leakage compensation Cst I feedback Regulated cascode preamp.  high gain.  less crosstalk path through biasing voltage. Triple well NMOS input.  shield from substrate noise. Feedback capacitor discharged by NMOS feedback transistor. Leakage current compensation scheme based on differential amplifier. 2ke<Qin<22ke 100nA leakage  10mV DC shift Vout[V] t[s] Vout[V] t[s] 200m 250m 225m 0.1  0.5  0.1  0.5  200m 300m 380m

Marlon Barbero, FE-I4 Chip, Pixel2010, Grindelwald Switzerland, Sept. 7 th nd stage & Comparator PMOS input folded regulated cascode (straight cascode in futur?). Negative going output. Classic 2-stage comparator. 20ns timewalk for 2ke - < Qin < 52ke - & - Cd=0.4p & Il=100nA ENC[e - ] Cd[F] Qin[C] t LE [s] 100f 200f300f k20k30k40k Il=0nA 20n 10n 0 2 nd stage amplif. Discriminator Il=100nA

Marlon Barbero, FE-I4 Chip, Pixel2010, Grindelwald Switzerland, Sept. 7 th Clock Multiplier For IBL, need to transmit data out at BW of 160Mb/s 2 options: – send a 80MHz CLK to the FE and use both edges to transmit Needs modification of BOC / ROD to produce higher speed TTC Needs synchronization protocol on the FE between 80MHz clock & beam crossing. A new DORIC needs to decode CLK at twice frequency – send a 40MHz CLK to the FE and multiply clock on FE Needs a clock multiplier on chip Note: synergy with what the strip MCC need In FE-I4, we will provide both options: – Clock multiplier from the 40MHz input clock – AUX: possibility to send the 80MHz to the FE I/O choices for ATLAS IBL, ATLAS Pixel System Design Task Force

Marlon Barbero, FE-I4 Chip, Pixel2010, Grindelwald Switzerland, Sept. 7 th PLL Overview Charge Pump Voltage Controlled Oscillator Phase Frequency Detector Frequency Divider Loop Filter Conversion and Buffering 40 MHz 640 MHz

Marlon Barbero, FE-I4 Chip, Pixel2010, Grindelwald Switzerland, Sept. 7 th b10b encoder For IBL, need to transmit data out at BW of 160Mb/s At BOC/ROD: – Data rate 4 times the clock rate – Phase adjustment Use Clock Data Recovery mechanism CDR requires an output data stream with good engineering properties 8b10b: – adequate for this purpose, enough transitions for reliable CDR – widely used  easy to implement – provides some level of error detection – provides comma for frame identification & synchronization I/O choices for ATLAS IBL, ATLAS Pixel System Design Task Force

Marlon Barbero, FE-I4 Chip, Pixel2010, Grindelwald Switzerland, Sept. 7 th SEU-hardened latch CPPM has studied the influence of various layout of a DICE latch on the SEU x-section. Latch5.1 and latch5.2 ; Area :12µm × 4µm = 48 μm 2 nMos separation : 7µm ; pMos separation : 3 µm Physical separation of sensitive node pairs. Calin et al, IEEE Trans. Nucl. Sci. vol43, n.6, a 1.b 2.a 2.b 3.a 3.b 1.a 1.b 2.a 2.b 3.a 3.b Triple Redundant Logic with Interleaved Layout. X-section [cm 2.bit -1 ]: - Standard Latch: ~ DICE w. improved layout: ~ X-section : <

Marlon Barbero, FE-I4 Chip, Pixel2010, Grindelwald Switzerland, Sept. 7 th Pixel occupancy  Data bandwidth Pixel hit rate  FE output bandwidth: – # bits / pixel transmitted? » address 7+9 bits, analog info 4+2 bits  22b? » data output protocol? Reduce data output by taking into account clustered nature of real physics hits. NUMBER OF PIXELS FE-I4, central module, 21cm layer FE-I4, central module, 3.7cm layer 10xLHC FE-I4, central module, 3.7cm layer 3xLHC

Marlon Barbero, FE-I4 Chip, Pixel2010, Grindelwald Switzerland, Sept. 7 th Pixel occupancy  Data bandwidth Example 3: clustered data out with fixed format. compression factor (all at 3×LHC) 3.7cm (vs. 21cm), η=0 indiv pixels: 4.09 (0.25)×( )= 1.00 (1.00)A.U. static 1×2: 3.45 (0.18)×(7+8+2×4+2)=0.96 (0.83) A.U. dynamic 1×2: 3.02 (0.15)×(7+9+2×4+2)= 0.87 (0.74) A.U. static 1×4: 2.86 (0.17)×(6+8+4×4+4)=1.08 (1.08) A.U. dyn. in-DC 1×4: 2.43 (0.15)×(6+9+4×4+4)= 0.95 (0.95) A.U. dynamic 1×4: 2.13 (0.14)×(7+9+4×4+4)= 0.85 (0.94) A.U. DC(×40) row (×336) column rowToT NL assumption: 100kHz L1T, 336×80 pixels FE-I4 Disclaimer: no header, trailer, DC-balancing, error correction… 10 6.count.FE -1.s -1 preliminary

Marlon Barbero, FE-I4 Chip, Pixel2010, Grindelwald Switzerland, Sept. 7 th Output data protocol 24-bit Record Word Acro -nym Field 1Field 2Field 3Field 4Field 5Comments Data Header DH xxxx [3:0] trigID [7:0] bcID xxxx reserved for later use Data Record DR [6:0] Column [8:0]Row [3:0] ToTtop [3:0] ToTbot Column numbering: to Address Record AR Type [14:0] Address Type 0: Global Register / Type 1: Shift Register Position Value Record VR [15:0] Value Value Record without previous Address Record allowed Service Record SR [15:0] Message Service Message (e.g. error codes) Empty Record ER Idle = K.28.1 commas (8b10b coding case) 8b10b frame: SOF (K.28.7), followed by 24 bits record word(s) and an EOF (K.28.5) + idle (K.28.1) Table: possible data words