Numerical simulations of the SN driven ISM Axel Brandenburg (NORDITA, Copenhagen, Denmark) Boris Gudiksen (Stockholm Observatory, Sweden) Graeme Sarson.

Slides:



Advertisements
Similar presentations
Simulations of the core/SOL transition of a tokamak plasma Frederic Schwander,Ph. Ghendrih, Y. Sarazin IRFM/CEA Cadarache G. Ciraolo, E. Serre, L. Isoardi,
Advertisements

September 2005 Magnetic field excitation in galaxies.
The Vertical Structure of Radiation Dominated Accretion Disks Omer Blaes with Shigenobu Hirose and Julian Krolik.
Emerging Flux Simulations Bob Stein A.Lagerfjard Å. Nordlund D. Benson D. Georgobiani 1.
Initial Analysis of the Large-Scale Stein-Nordlund Simulations Dali Georgobiani Formerly at: Center for Turbulence Research Stanford University/ NASA Presenting.
Solar Convection: What it is & How to Calculate it. Bob Stein.
Simulations of Emerging Magnetic Flux in Active Regions W. P. Abbett Space Sciences Laboratory University of California, Berkeley.
Novae and Mixing John ZuHone ASCI/Alliances Center for Thermonuclear Flashes University of Chicago.
Supergranulation-Scale Solar Convection Simulations David Benson, Michigan State University, USA Robert Stein, Michigan State University, USA Aake Nordlund,
Katarzyna Otmianowska-Mazur (OA UJ Kraków)‏ Grzegorz Kowal (Uniw. Sao Paulo, Brazylia/OA UJ Kraków)‏ Katarzyna Kulpa-Dybeł (OA UJ Kraków) Hubert Siejkowski,
Convection Simulations Robert Stein Ake Nordlund Dali Georgobiani David Benson Werner Schafenberger.
Solar Magneto-Convection: Structure & Dynamics Robert Stein - Mich. State Univ. Aake Nordlund - NBIfAFG.
Excitation of Oscillations in the Sun and Stars Bob Stein - MSU Dali Georgobiani - MSU Regner Trampedach - MSU Martin Asplund - ANU Hans-Gunther Ludwig.
Super-granulation Scale Convection Simulations Robert Stein, David Benson - Mich. State Univ. Aake Nordlund - Niels Bohr Institute.
Understanding the Connection Between Magnetic Fields in the Solar Interior and the Solar Corona George H. Fisher Space Sciences Laboratory UC Berkeley.
Generation of Solar Energetic Particles (SEP) During May 2, 1998 Eruptive Event Igor V. Sokolov, Ilia I. Roussev, Tamas I. Gombosi (University of Michigan)
High Altitude Observatory (HAO) – National Center for Atmospheric Research (NCAR) The National Center for Atmospheric Research is operated by the University.
Krakow 2010 Galactic magnetic fields: MRI or SN-driven dynamo? Detlef Elstner Oliver Gressel Natali Dziourkevich Alfio Bonanno Günther Rüdiger.
The Pencil Code -- a high order MPI code for MHD turbulence Anders Johansen (Sterrewacht Leiden)‏ Axel Brandenburg (NORDITA, Stockholm)‏ Wolfgang Dobler.
5. Simplified Transport Equations We want to derive two fundamental transport properties, diffusion and viscosity. Unable to handle the 13-moment system.
© British Crown Copyright 2007/MOD Numerical Simulation Using High-Resolution Methods A. D. Weatherhead, AWE D. Drikakis, Cranfield University.
Magneto-hydrodynamic turbulence: from the ISM to discs
Zhaorui Li and Farhad Jaberi Department of Mechanical Engineering Michigan State University East Lansing, Michigan Large-Scale Simulations of High Speed.
Magnetic dynamo over different astrophysical scales Axel Brandenburg & Fabio Del Sordo (Nordita) with contributions from many others seed field primordial.
About the 8 keV plasma at the Galactic Center CEA, Saclay Belmont R. Tagger M. UCLA Muno M. Morris M. Cowley S. High Energy Phenomena in the Galactic Center.
Relativistic Outflow Formation by Magnetic Field around Rapidly Rotating Black Hole Shinji Koide ( Toyama University ) Black Hole 2003, October 29 (Wed),
Magneto-rotational instability Axel Brandenburg (Nordita, Copenhagen)
Photoionisation of Supernova Driven, Turbulent, MHD Simulations of the Diffuse Ionised Gas Jo Barnes 1, Kenny Wood 1, Alex Hill 2 [1]University of St Andrews,
Low Frequency Background and Cosmology Xuelei Chen National Astronomical Observatories Kashigar, September 10th 2005.
BGU WISAP Spectral and Algebraic Instabilities in Thin Keplerian Disks: I – Linear Theory Edward Liverts Michael Mond Yuri Shtemler.
EVAT 554 OCEAN-ATMOSPHERE DYNAMICS FILTERING OF EQUATIONS OF MOTION FOR ATMOSPHERE (CONT) LECTURE 7 (Reference: Peixoto & Oort, Chapter 3,7)
Dynamics of ITG driven turbulence in the presence of a large spatial scale vortex flow Zheng-Xiong Wang, 1 J. Q. Li, 1 J. Q. Dong, 2 and Y. Kishimoto 1.
ORBITAL DECAY OF HIGH VELOCITY CLOUDS LUMA FOHTUNG UW-Madison Astrophysics REU 2004 What is the fate of the gas clouds orbiting the MilkyWay Galaxy?
Large Scale Dynamo Action in MRI Disks Role of stratification Dynamo cycles Mean-field interpretation Incoherent alpha-shear dynamo Axel Brandenburg (Nordita,
Dynamical Instability of Differentially Rotating Polytropes Dept. of Earth Science & Astron., Grad. School of Arts & Sciences, Univ. of Tokyo S. Karino.
Catastrophic  -quenching alleviated by helicity flux and shear Axel Brandenburg (Nordita, Copenhagen) Christer Sandin (Uppsala) Collaborators: Eric G.
Magnetohydrodynamic simulations of stellar differential rotation and meridional circulation (submitted to A&A, arXiv: ) Bidya Binay Karak (Nordita.
The solar tachocline: theoretical issues Jean-Paul Zahn Observatoire de Paris.
Three-Dimensional MHD Simulation of Astrophysical Jet by CIP-MOCCT Method Hiromitsu Kigure (Kyoto U.), Kazunari Shibata (Kyoto U.), Seiichi Kato (Osaka.
Numerical simulations of astrophysical dynamos Axel Brandenburg (Nordita, Stockholm) Dynamos: numerical issues Alpha dynamos do exist: linear and nonlinear.
Geodynamics VI Core Dynamics and the Magnetic Field Bruce Buffett, UC Berkeley.
Gas mixing and Star formation by shock waves and turbulence Claudio Melioli Elisabete M. de Gouveia Dal Pino (IAG-USP)
Magneto-Hydrodynamic Equations Mass conservation /t = − ∇ · (u) Momentum conservation (u)/t =− ∇ ·(uu)− ∇ −g+J×B−2Ω×u− ∇ · visc Energy conservation /t.
Ivo Rolf Seitenzahl Graduate Student in Physics Advisor: Jim Truran.
Dongsu Ryu (CNU), Magnetism Team in Korea
Black Hole Accretion, Conduction and Outflows Kristen Menou (Columbia University) In collaboration with Taka Tanaka (GS)
Expected Gamma-Ray Emission of SN 1987A in the Large Magellanic Cloud (d = 50 kpc) E.G.Berezhko 1, L.T. Ksenofontov 1, and H.J.Völk 2 1 Yu.G.Shafer Institute.
Turbulence and Magnetic Field Amplification in the Supernova Remnants Tsuyoshi Inoue (NAOJ) Ryo Yamazaki (Hiroshima Univ.) Shu-ichiro Inutsuka (Kyoto Univ.)
CHANGSHENG CHEN, HEDONG LIU, And ROBERT C. BEARDSLEY
Governing Equations II
Magnetic Fields and Protostellar Cores Shantanu Basu University of Western Ontario YLU Meeting, La Thuile, Italy, March 24, 2004.
Turbulent transport coefficients from numerical experiments Axel Brandenburg & Matthias Rheinhardt (Nordita, Stockholm) Extracting concepts from grand.
ANGULAR MOMENTUM TRANSPORT BY MAGNETOHYDRODYNAMIC TURBULENCE Gordon Ogilvie University of Cambridge TACHOCLINE DYNAMICS
On the structure of the neutral atomic medium Patrick Hennebelle Ecole Normale supérieure-Observatoire de Paris and Edouard Audit Commissariat à l’énergie.
May 23, 2006SINS meeting Structure Formation and Particle Mixing in a Shear Flow Boundary Layer Matthew Palotti University of Wisconsin.
Interaction between vortex flow and microturbulence Zheng-Xiong Wang (王正汹) Dalian University of Technology, Dalian, China West Lake International Symposium.
Dynamics of Multi-Phase Interstellar Medium Shu-ichiro Inutsuka (Kyoto Univ.) Collaboration with Hiroshi Koyama (Univ. Maryland) Tsuyoshi Inoue (Kyoto.
Pencil Code: multi-purpose and multi-user maintained Axel Brandenburg (Nordita, Stockholm) Wolfgang Dobler (Univ. Calgary) and now many more…. (...just.
GOAL: To understand the physics of active region decay, and the Quiet Sun network APPROACH: Use physics-based numerical models to simulate the dynamic.
The Effect of Sea Surface Temperature Variation on Wind/Stress Retrieval W. Timothy Liu & Xiaosu Xie Atmospheric Stability Ocean Viscosity.
THE DYNAMIC EVOLUTION OF TWISTED MAGNETIC FLUX TUBES IN A THREE-DIMENSIONALCONVECTING FLOW. II. TURBULENT PUMPING AND THE COHESION OF Ω-LOOPS.
The Tayler instability in stably-stratified stars and a differential- rotation-driven dynamo Jon Braithwaite CITA, Toronto.
Stability of magnetic fields in stars Vienna 11 th September 2007 Jonathan Braithwaite CITA, Toronto.
Overview of dynamos in stars and galaxies
Algorithm of the explicit type for porous medium flow simulation
Numerical Simulations of Solar Magneto-Convection
GOAL: To understand the physics of active region decay, and the Quiet Sun network APPROACH: Use physics-based numerical models to simulate the dynamic.
14. Computational Fluid Dynamics
Energy spectra of small scale dynamos with large Reynolds numbers
Catastrophic a-quenching alleviated by helicity flux and shear
Presentation transcript:

Numerical simulations of the SN driven ISM Axel Brandenburg (NORDITA, Copenhagen, Denmark) Boris Gudiksen (Stockholm Observatory, Sweden) Graeme Sarson (University of Newcastle, UK) (University of Newcastle, UK) Tony Mee (University of Newcastle, UK) (NBIAfG, University of Copenhagen, Denmark) Åke Nordlund Anvar Shukurov

Sarson et al: ISM2 SN driven Turbulence Korpi et al (1999)

Sarson et al: ISM3 Recent ISM Models

Sarson et al: ISM4 Equations – 1 Continuity equation (for natural log of density) Momentum equation (for velocity)

Sarson et al: ISM5 Equations - 2 Energy equation (for energy density e ) Induction equation (for Magnetic vector potential A )

Sarson et al: ISM6 Computational Domain Rectangular box:

Sarson et al: ISM7 Boundary Conditions Periodic in y Sliding periodic in x (i.e. r) Closed in z (preliminary model)

Sarson et al: ISM8 Numerical Methods Third-order Hyman scheme for time stepping Sixth-order compact scheme for spatial derivatives Shock-capturing viscosity in convergence areas: Hyperviscosity to stabilize advection and waves:

Sarson et al: ISM9 The Model - 1 Stratified, sheared gas layer in external gravitational field Initial hydrostatic equilibrium,

Sarson et al: ISM10 The Model – 2 Gas components à la Katia Ferrière – H 2 : (warm + hot) HI + HII. Initial magnetic field,

Sarson et al: ISM11 The Model – 3 Shear due to overall differential rotation, UV heating (cf. Wolfire et al. 1995),

Sarson et al: ISM12 Motions driven by supernovae explosions – SNe Type I

Sarson et al: ISM13 Motions driven by supernovae explosions – SNe Type II

Sarson et al: ISM14 Oooh, pretty picture….

Sarson et al: ISM15 Oooh Pretty Picture

Sarson et al: ISM16 Varying Density

Sarson et al: ISM17 Mean Distributions

Sarson et al: ISM18 SN II Rates

Sarson et al: ISM19 Gaussian Scale Heights

Sarson et al: ISM20 Varying Column Density

Sarson et al: ISM21 Varying B

Sarson et al: ISM22 Varying Magnetic Field Strength

Sarson et al: ISM23 Conclusions The large-scale structure of the solution is reasonable. The SN implementation produces plausible, self-consistent results. More analysis is required. Is field-generation possible? Will investigate cosmic ray dynamics.

Sarson et al: ISM24 THE END

Sarson et al: ISM25 Solar Density

Sarson et al: ISM26 Weak B Field

Sarson et al: ISM27 The ISM